Brillinger mixing of determinantal point processes and statistical applications

Stationary determinantal point processes are proved to be Brillinger mixing. This property is an important step towards asymptotic statistics for these processes. As an important example, a central limit theorem for a wide class of functionals of determinantal point processes is established. This result yields in particular the asymptotic normality of the estimator of the intensity of a stationary determinantal point process and of the kernel estimator of its pair correlation.

[1]  L. Heinrich,et al.  Central limit theorem for the integrated squared error of the empirical second-order product density and goodness-of-fit tests for stationary point processes , 2011 .

[2]  Lothar Heinrich,et al.  Absolute regularity and Brillinger-mixing of stationary point processes , 2013 .

[3]  L. Heinrich,et al.  On Estimating the Asymptotic Variance of Stationary Point Processes , 2010 .

[4]  Yuval Peres,et al.  Zeros of Gaussian Analytic Functions and Determinantal Point Processes , 2009, University Lecture Series.

[5]  E. Jolivet,et al.  Upper bound of the speed of convergence of moment density Estimators for stationary point processes , 1984 .

[6]  Ben Taskar,et al.  Determinantal Point Processes for Machine Learning , 2012, Found. Trends Mach. Learn..

[7]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .

[8]  T. Shirai,et al.  Random point fields associated with certain Fredholm determinants I: fermion, Poisson and boson point processes , 2003 .

[9]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .

[10]  E. Jolivet MOMENT ESTIMATION FOR STATIONARY POINT PROCESSES IN R , 2008 .

[11]  Ulrike Goldschmidt,et al.  An Introduction To The Theory Of Point Processes , 2016 .

[12]  Fr'ed'eric Lavancier,et al.  Quantifying repulsiveness of determinantal point processes , 2014, 1406.2796.

[13]  Lothar Heinrich,et al.  Asymptotic Methods in Statistics of Random Point Processes , 2013 .

[14]  R. M. Dudley,et al.  Real Analysis and Probability , 1989 .

[15]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[16]  R. Tibshirani,et al.  An introduction to the bootstrap , 1993 .

[17]  D. Stoyan,et al.  On One of Matérn's Hard‐core Point Process Models , 1985 .

[18]  V. Schmidt,et al.  NORMAL CONVERGENCE OF MULTIDIMENSIONAL SHOT NOISE AND RATES OF THIS CONVERGENCE , 1985 .

[19]  Alexander Soshnikov Gaussian limit for determinantal random point fields , 2000 .

[20]  O. Macchi The coincidence approach to stochastic point processes , 1975, Advances in Applied Probability.

[21]  Wuyang Zhou,et al.  The Ginibre Point Process as a Model for Wireless Networks With Repulsion , 2014, IEEE Transactions on Wireless Communications.

[22]  S. Velizarov Introduction to fourier analysis , 1996 .

[23]  Lothar Heinrich,et al.  Central limit theorems for empirical product densities of stationary point processes , 2014, Statistical Inference for Stochastic Processes.

[24]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[25]  Svante Janson,et al.  Normal Convergence by Higher Semiinvariants with Applications to Sums of Dependent Random Variables and Random Graphs , 1988 .

[26]  A. Soshnikov Determinantal random point fields , 2000, math/0002099.

[27]  T. Mattfeldt Stochastic Geometry and Its Applications , 1996 .

[28]  J. Møller,et al.  Determinantal point process models and statistical inference , 2012, 1205.4818.

[29]  K. Krickeberg,et al.  Processus ponctuels en statistique , 1982 .

[30]  N. Miyoshi,et al.  A cellular network model with Ginibre configurated base stations , 2012 .

[31]  J. Møller,et al.  Statistical Inference and Simulation for Spatial Point Processes , 2003 .