An Algorithm to Compute the Nearest Point in the Lattice $A_{n}^*$

The lattice <i>A</i> <sub>n</sub> <sup>*</sup> is an important lattice because of its covering properties in low dimensions. Clarkson described an algorithm to compute the nearest lattice point in <i>A</i> <sub>n</sub> <sup>*</sup> that requires <i>O</i>(<i>n</i> log <i>n</i>) arithmetic operations. In this correspondence, we describe a new algorithm. While the complexity is still <i>O</i>(<i>n</i> log <i>n</i>), it is significantly simpler to describe and verify. In practice, we find that the new algorithm also runs faster.

[1]  B.G. Quinn Estimating the mode of a phase distribution , 2007, 2007 Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers.

[2]  R. Benzel,et al.  The capacity region of a class of discrete additive degraded interference channels (Corresp.) , 1979, IEEE Trans. Inf. Theory.

[3]  I. Vaughan L. Clarkson,et al.  Approximate Maximum-Likelihood Period Estimation From Sparse, Noisy Timing Data , 2008, IEEE Transactions on Signal Processing.

[4]  N. J. A. Sloane,et al.  Soft decoding techniques for codes and lattices, including the Golay code and the Leech lattice , 1986, IEEE Trans. Inf. Theory.

[5]  I. Vaughan L Clarkson,et al.  Approximation of linear forms by lattice points with applications to signal processing , 1997 .

[6]  Hiroshi Sato,et al.  Two-user communication channels , 1977, IEEE Trans. Inf. Theory.

[7]  Aydano B. Carleial,et al.  Interference channels , 1978, IEEE Trans. Inf. Theory.

[8]  Max H. M. Costa,et al.  The capacity region of a class of deterministic interference channels , 1982, IEEE Trans. Inf. Theory.

[9]  A. Sridharan Broadcast Channels , 2022 .

[10]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[11]  Robert G. Gallager,et al.  Capacity and coding for degraded broadcast channels , 1974 .

[12]  Max H. M. Costa,et al.  The capacity region of the discrete memoryless interference channel with strong interference , 1987, IEEE Trans. Inf. Theory.

[13]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[14]  Rudolf Ahlswede,et al.  Multi-way communication channels , 1973 .

[15]  Donald E. Knuth,et al.  The Art of Computer Programming: Volume 3: Sorting and Searching , 1998 .

[16]  N. J. A. Sloane,et al.  Fast quantizing and decoding and algorithms for lattice quantizers and codes , 1982, IEEE Trans. Inf. Theory.

[17]  J. Martinet Perfect Lattices in Euclidean Spaces , 2010 .

[18]  W. Fischer,et al.  Sphere Packings, Lattices and Groups , 1990 .

[19]  I. Vaughan L. Clarkson,et al.  Frequency estimation, phase unwrapping and the nearest lattice point problem , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[20]  Hiroshi Sato,et al.  The capacity of the Gaussian interference channel under strong interference , 1981, IEEE Trans. Inf. Theory.

[21]  Claude E. Shannon,et al.  Two-way Communication Channels , 1961 .

[22]  I. Vaughan L. Clarkson,et al.  An Algorithm to Compute a Nearest Point in the Lattice An* , 1999, AAECC.

[23]  Hans S. Witsenhausen,et al.  A conditional entropy bound for a pair of discrete random variables , 1975, IEEE Trans. Inf. Theory.