A machine learning model to predict yield surfaces from crystal plasticity simulations

[1]  J. Yoon,et al.  A general yield function with differential and anisotropic hardening for strength modelling under various stress states with non-associated flow rule , 2022, International Journal of Plasticity.

[2]  D. Mohr,et al.  From CP-FFT to CP-RNN: Recurrent Neural Network Surrogate Model of Crystal Plasticity , 2022, International Journal of Plasticity.

[3]  A. Hartmaier,et al.  Optimal Data-Generation Strategy for Machine Learning Yield Functions in Anisotropic Plasticity , 2022, Frontiers in Materials.

[4]  Kai Du,et al.  Evolution of yield behavior for AA6016-T4 and DP490 - Towards a systematic evaluation strategy for material models , 2022, International Journal of Plasticity.

[5]  Y. Zhang,et al.  Parameter identifiability analysis: mitigating the non-uniqueness issue in the inverse identification of an anisotropic yield function , 2022, International Journal of Solids and Structures.

[6]  Jan N. Fuhg,et al.  Machine-learning convex and texture-dependent macroscopic yield from crystal plasticity simulations , 2022, Materialia.

[7]  W. Muhammad,et al.  A new ANN based crystal plasticity model for FCC materials and its application to non-monotonic strain paths , 2021, International Journal of Plasticity.

[8]  Z. Cui,et al.  A virtual laboratory based on full-field crystal plasticity simulation to characterize the multiscale mechanical properties of AHSS , 2021, Scientific Reports.

[9]  D. Raabe,et al.  Teaching solid mechanics to artificial intelligence—a fast solver for heterogeneous materials , 2021, npj Computational Materials.

[10]  P. Hu,et al.  Characterization on the thermal anisotropic behaviors of high strength AA7075 alloy with the Yld2004-18p yield function , 2021 .

[11]  J. Yoon,et al.  Machine learning-based constitutive model for J2- plasticity , 2021, International Journal of Plasticity.

[12]  Ping Liu,et al.  Multi-level deep drawing simulations of AA3104 aluminium alloy using crystal plasticity finite element modelling and phenomenological yield function , 2021 .

[13]  K. Inal,et al.  Evolution of subsequent yield surfaces with plastic deformation along proportional and non-proportional loading paths on annealed AA6061 alloy: Experiments and crystal plasticity finite element modeling , 2021 .

[14]  D. Mohr,et al.  Neural network model predicting forming limits for Bi-linear strain paths , 2020 .

[15]  Nikolaos N. Vlassis,et al.  Sobolev training of thermodynamic-informed neural networks for smoothed elasto-plasticity models with level set hardening , 2020, ArXiv.

[16]  Dirk Mohr,et al.  Using neural networks to represent von Mises plasticity with isotropic hardening , 2020 .

[17]  Anidhya Athaiya,et al.  ACTIVATION FUNCTIONS IN NEURAL NETWORKS , 2020, International Journal of Engineering Applied Sciences and Technology.

[18]  A. Hartmaier Data-Oriented Constitutive Modeling of Plasticity in Metals , 2020, Materials.

[19]  O. Cazacu New expressions and calibration strategies for Karafillis and Boyce (1993) yield criterion , 2020, International Journal of Solids and Structures.

[20]  M. Diehl,et al.  Using spectral-based representative volume element crystal plasticity simulations to predict yield surface evolution during large scale forming simulations , 2020 .

[21]  Usman Ali,et al.  Application of artificial neural networks in micromechanics for polycrystalline metals , 2019, International Journal of Plasticity.

[22]  Kai Zhang,et al.  Assessment of advanced Taylor models, the Taylor factor and yield-surface exponent for FCC metals , 2019, International Journal of Plasticity.

[23]  Kenichi Tamura,et al.  Quantitative measure of nonconvexity for black-box continuous functions , 2019, Inf. Sci..

[24]  S. Nikolov,et al.  DAMASK – The Düsseldorf Advanced Material Simulation Kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale , 2018, Computational Materials Science.

[25]  M. Worswick,et al.  Evaluation and calibration of anisotropic yield criteria in shear Loading: Constraints to eliminate numerical artefacts , 2017, International Journal of Solids and Structures.

[26]  H. Yang,et al.  Anisotropic and asymmetrical yielding and its distorted evolution: Modeling and applications , 2016 .

[27]  Martin Diehl,et al.  A virtual laboratory using high resolution crystal plasticity simulations to determine the initial yield surface for sheet metal forming operations , 2016 .

[28]  F. Barlat,et al.  Parameter reduction for the Yld2004-18p yield criterion , 2016 .

[29]  Ke-shi Zhang,et al.  Subsequent yielding of polycrystalline aluminum after cyclic tension–compression analyzed by experiments and simulations , 2015 .

[30]  P. Houtte,et al.  Multi-level modelling of mechanical anisotropy of commercial pure aluminium plate: crystal plasticity models, advanced yield functions and parameter identification , 2015 .

[31]  Barak A. Pearlmutter,et al.  Automatic differentiation in machine learning: a survey , 2015, J. Mach. Learn. Res..

[32]  Bart De Moor,et al.  Hyperparameter Search in Machine Learning , 2015, ArXiv.

[33]  Hamid Abdi,et al.  Artificial neural network modeling of flow stress in hot rolling , 2014 .

[34]  J. Ihlemann,et al.  On the phenomenological modelling of yield surface distortion , 2013, 1309.3091.

[35]  M. Diehl,et al.  A spectral method solution to crystal elasto-viscoplasticity at finite strains , 2013 .

[36]  Frédéric Barlat,et al.  New convex yield functions for orthotropic metal plasticity , 2013 .

[37]  N. Haghdadi,et al.  Artificial neural network modeling to predict the high temperature flow behavior of an AZ81 magnesium alloy , 2012, Materials & Design.

[38]  Philip Eisenlohr,et al.  An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials , 2012 .

[39]  O. Cazacu,et al.  Analytical yield criterion for an anisotropic material containing spherical voids and exhibiting tension–compression asymmetry , 2011 .

[40]  O. Engler,et al.  Analysis of Earing in Deep Drawn Cups , 2010 .

[41]  T. Bieler,et al.  Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications , 2010 .

[42]  Dierk Raabe,et al.  Virtual material testing for stamping simulations based on polycrystal plasticity , 2009 .

[43]  O. Hopperstad,et al.  Behaviour of extruded aluminium alloys under proportional and non-proportional strain paths , 2009 .

[44]  P. Houtte,et al.  The Facet method: A hierarchical multilevel modelling scheme for anisotropic convex plastic potentials , 2009 .

[45]  Tore Børvik,et al.  Evaluation of identification methods for YLD2004-18p , 2008 .

[46]  J. Zhong,et al.  Application of neural networks to predict the elevated temperature flow behavior of a low alloy steel , 2008 .

[47]  Franz Roters,et al.  Selecting a set of discrete orientations for accurate texture reconstruction , 2008 .

[48]  Frédéric Barlat,et al.  On linear transformations of stress tensors for the description of plastic anisotropy , 2007 .

[49]  Jeong Whan Yoon,et al.  Review of Drucker¿s postulate and the issue of plastic stability in metal forming , 2006 .

[50]  Frédéric Barlat,et al.  Linear transfomation-based anisotropic yield functions , 2005 .

[51]  Paul Van Houtte,et al.  Deformation texture prediction: from the Taylor model to the advanced Lamel model , 2005 .

[52]  D. Lloyd,et al.  Effect of cube texture on sheet metal formability , 2004 .

[53]  F. Barlat,et al.  Plane stress yield function for aluminum alloy sheets—part 1: theory , 2003 .

[54]  Ricardo A. Lebensohn,et al.  Mechanical response of zirconium—I. Derivation of a polycrystal constitutive law and finite element analysis , 2001 .

[55]  L. Dixon,et al.  Automatic differentiation of algorithms , 2000 .

[56]  Kjell Arne Malo,et al.  Calibration of anisotropic yield criteria using uniaxial tension tests and bending tests , 1998 .

[57]  V. Lubarda,et al.  Some comments on plasticity postulates and non-associative flow rules , 1996 .

[58]  A. P. Karafillis,et al.  A general anisotropic yield criterion using bounds and a transformation weighting tensor , 1993 .

[59]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[60]  Alan Needleman,et al.  An analysis of nonuniform and localized deformation in ductile single crystals , 1982 .

[61]  R. Hill Theoretical plasticity of textured aggregates , 1979, Mathematical Proceedings of the Cambridge Philosophical Society.

[62]  J. Hutchinson,et al.  Bounds and self-consistent estimates for creep of polycrystalline materials , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[63]  Jonas Mockus,et al.  On Bayesian Methods for Seeking the Extremum , 1974, Optimization Techniques.

[64]  R. Hill A theory of the yielding and plastic flow of anisotropic metals , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[65]  Thomas Stützle,et al.  F-Race and Iterated F-Race: An Overview , 2010, Experimental Methods for the Analysis of Optimization Algorithms.

[66]  Tung-Kuan Liu,et al.  Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm , 2006, IEEE Trans. Neural Networks.

[67]  Frédéric Barlat,et al.  Prediction of six or eight ears in a drawn cup based on a new anisotropic yield function , 2006 .

[68]  Kenneth W. Neale,et al.  Evaluation of anisotropic yield functions for aluminum sheets , 2003 .

[69]  Dorel Banabic,et al.  A NEW YIELD CRITERION FOR ORTHOTROPIC SHEET METALS UNDER PLANE-STRESS CONDITIONS , 2000 .

[70]  P. Houtte,et al.  QUANTITATIVE PREDICTION OF COLD ROLLING TEXTURES IN LOW-CARBON STEEL BY MEANS OF THE LAMEL MODEL , 1999 .

[71]  F. Barlat,et al.  A six-component yield function for anisotropic materials , 1991 .

[72]  William F. Hosford,et al.  Upper-bound anisotropic yield locus calculations assuming 〈111〉-pencil glide , 1980 .

[73]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[74]  D. C. Drucker Some implications of work hardening and ideal plasticity , 1950 .

[75]  Richard Von Mises,et al.  Mechanik der plastischen Formänderung von Kristallen , 1928 .