Mass and Rate of Hierarchical Black Hole Mergers in Young, Globular and Nuclear Star Clusters

Hierarchical mergers are one of the distinctive signatures of binary black hole (BBH) formation through dynamical evolution. Here, we present a fast semi-analytic approach to simulate hierarchical mergers in nuclear star clusters (NSCs), globular clusters (GCs) and young star clusters (YSCs). Hierarchical mergers are more common in NSCs than they are in both GCs and YSCs because of the different escape velocity. The mass distribution of hierarchical BBHs strongly depends on the properties of first-generation BBHs, such as their progenitor’s metallicity. In our fiducial model, we form black holes (BHs) with masses up to ∼103 M⊙ in NSCs and up to ∼102 M⊙ in both GCs and YSCs. When escape velocities in excess of 100 km s−1 are considered, BHs with mass >103 M⊙ are allowed to form in NSCs. Hierarchical mergers lead to the formation of BHs in the pair instability mass gap and intermediate-mass BHs, but only in metal-poor environments. The local BBH merger rate in our models ranges from ∼10 to ∼60 Gpc−3 yr−1; hierarchical BBHs in NSCs account for ∼10−2–0.2 Gpc−3 yr−1, with a strong upper limit of ∼10 Gpc−3 yr−1. When comparing our models with the second gravitational-wave transient catalog, we find that multiple formation channels are favored to reproduce the observed BBH population.

[1]  F. Abdalla,et al.  Cosmic rates of black hole mergers and pair-instability supernovae from chemically homogeneous binary evolution , 2020, Monthly Notices of the Royal Astronomical Society.

[2]  Steinn Sigurdsson,et al.  MODELING THE RETENTION PROBABILITY OF BLACK HOLES IN GLOBULAR CLUSTERS: KICKS AND RATES , 2008, 0809.1617.

[3]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[4]  Douglas P. Hamilton,et al.  Production of intermediate-mass black holes in globular clusters , 2001, astro-ph/0106188.

[5]  Ilya Mandel,et al.  Hierarchical analysis of gravitational-wave measurements of binary black hole spin–orbit misalignments , 2017, 1703.06873.

[6]  M. Miller,et al.  MERGERS OF STELLAR-MASS BLACK HOLES IN NUCLEAR STAR CLUSTERS , 2008, 0804.2783.

[7]  J. Hills,et al.  Computer simulations of close encounters between single stars and hard binaries , 1980 .

[8]  Jim W. Barrett,et al.  The effect of the metallicity-specific star formation history on double compact object mergers , 2019, Monthly Notices of the Royal Astronomical Society.

[9]  M. Fitchett The influence of gravitational wave momentum losses on the centre of mass motion of a Newtonian binary system , 1983 .

[10]  H. Middleton,et al.  Evidence for Hierarchical Black Hole Mergers in the Second LIGO–Virgo Gravitational Wave Catalog , 2020, The Astrophysical Journal Letters.

[11]  Coalescing binary systems of compact objects to (post)5/2-Newtonian order. V. Spin effects. , 1995, Physical review. D, Particles and fields.

[12]  S. Woosley Pulsational Pair-instability Supernovae , 2016, 1608.08939.

[13]  K. Holley-Bockelmann,et al.  Gravitational Wave Recoil and the Retention of Intermediate-Mass Black Holes , 2007, 0707.1334.

[14]  T. Callister,et al.  State of the Field: Binary Black Hole Natal Kicks and Prospects for Isolated Field Formation after GWTC-2 , 2020, The Astrophysical Journal.

[15]  P. C. Peters Gravitational Radiation and the Motion of Two Point Masses , 1964 .

[16]  Tomasz Bulik,et al.  A Comprehensive Study of Binary Compact Objects as Gravitational Wave Sources: Evolutionary Channels, Rates, and Physical Properties , 2001, astro-ph/0111452.

[17]  M. Mapelli,et al.  Formation of GW190521 from stellar evolution: the impact of the hydrogen-rich envelope, dredge-up, and 12C(α, γ)16O rate on the pair-instability black hole mass gap , 2020, Monthly Notices of the Royal Astronomical Society.

[18]  D. Holz,et al.  How Black Holes Get Their Kicks: Gravitational Radiation Recoil Revisited , 2004, astro-ph/0402056.

[19]  Laura Ferrarese David Merritt A Fundamental Relation Between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[20]  McMillan,et al.  Black Hole Mergers in the Universe , 1999, The Astrophysical journal.

[21]  M. Mapelli,et al.  Merging black hole binaries: the effects of progenitor's metallicity, mass-loss rate and Eddington factor , 2017, 1711.03556.

[22]  S. Tremaine,et al.  The formation of the nuclei of galaxies. I. M31. , 1975 .

[23]  Y. Zlochower,et al.  Large Merger Recoils and Spin Flips from Generic Black Hole Binaries , 2007, gr-qc/0701164.

[24]  S. D. Mink,et al.  Sensitivity of the lower edge of the pair-instability black hole mass gap to the treatment of time-dependent convection , 2020, Monthly Notices of the Royal Astronomical Society.

[25]  M. S. Shahriar,et al.  Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo , 2018, The Astrophysical Journal.

[26]  C. Pankow,et al.  One Channel to Rule Them All? Constraining the Origins of Binary Black Holes Using Multiple Formation Pathways , 2020, The Astrophysical Journal.

[27]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[28]  Pavel Kroupa,et al.  Stellar-mass black holes in star clusters: implications for gravitational-wave radiation , 2009, Proceedings of the International Astronomical Union.

[29]  The Neutron star and black hole initial mass function , 1995, astro-ph/9510136.

[30]  R. Capuzzo-Dolcetta,et al.  The evolution of the globular cluster system in a triaxial galaxy : can a galactic nucleus form by globular cluster capture ? , 1993, astro-ph/9301006.

[31]  Zoheyr Doctor,et al.  Evolutionary roads leading to low effective spins, high black hole masses, and O1/O2 rates for LIGO/Virgo binary black holes , 2017, Astronomy & Astrophysics.

[32]  Chris L. Fryer,et al.  The effect of pair-instability mass loss on black-hole mergers , 2016, 1607.03116.

[33]  F. Antonini,et al.  Greatly Enhanced Merger Rates of Compact-object Binaries in Non-spherical Nuclear Star Clusters , 2017, 1705.05848.

[34]  S. Márka,et al.  Cosmic Evolution of Stellar-mass Black Hole Merger Rate in Active Galactic Nuclei , 2020, The Astrophysical Journal.

[35]  M. J. Williams,et al.  GWTC-2.1: Deep Extended Catalog of Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run , 2021, 2108.01045.

[36]  S. Rappaport,et al.  The Effects of Binary Evolution on the Dynamics of Core Collapse and Neutron Star Kicks , 2003, astro-ph/0309588.

[37]  F. Antonini,et al.  Binary Black Hole Mergers from Field Triples: Properties, Rates, and the Impact of Stellar Evolution , 2017, 1703.06614.

[38]  Luciano Rezzolla,et al.  THE FINAL SPIN FROM BINARY BLACK HOLES IN QUASI-CIRCULAR ORBITS , 2016, 1605.01938.

[39]  M. Mapelli,et al.  The properties of merging black holes and neutron stars across cosmic time , 2019, Monthly Notices of the Royal Astronomical Society.

[40]  Bharath Pattabiraman,et al.  Binary Black Hole Mergers from Globular Clusters: Implications for Advanced LIGO. , 2015, Physical review letters.

[41]  Impact of the Rotation and Compactness of Progenitors on the Mass of Black Holes , 2019, The Astrophysical Journal.

[43]  H. Perets,et al.  Intermediate mass black holes in AGN discs – I. Production and growth , 2012, 1206.2309.

[44]  Vicky Kalogera,et al.  BLACK HOLE MERGERS AND BLUE STRAGGLERS FROM HIERARCHICAL TRIPLES FORMED IN GLOBULAR CLUSTERS , 2015, 1509.05080.

[45]  Y. Bouffanais,et al.  Hierarchical black hole mergers in young, globular and nuclear star clusters: the effect of metallicity, spin and cluster properties , 2021, 2103.05016.

[46]  M. Benacquista,et al.  Using final black hole spins and masses to infer the formation history of the observed population of gravitational wave sources , 2018, Monthly Notices of the Royal Astronomical Society.

[48]  B. A. Boom,et al.  Binary Black Hole Mergers in the First Advanced LIGO Observing Run , 2016, 1606.04856.

[49]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[50]  E. Stanway,et al.  BPASS predictions for binary black hole mergers , 2016, 1602.03790.

[51]  Y. Zlochower,et al.  Hangup kicks: still larger recoils by partial spin-orbit alignment of black-hole binaries. , 2011, Physical review letters.

[52]  Y. Bouffanais,et al.  The cosmic merger rate density of compact objects: impact of star formation, metallicity, initial mass function, and binary evolution , 2020, 2009.03911.

[53]  M. Gieles,et al.  Population synthesis of black hole binary mergers from star clusters , 2019, Monthly Notices of the Royal Astronomical Society.

[54]  Thomas J. Loredo Accounting for Source Uncertainties in Analyses of Astronomical Survey Data , 2004 .

[55]  T. Piran The implications of the Compton (GRO) observations for cosmological gamma-ray bursts , 1992 .

[56]  I. Mandel,et al.  Merging binary black holes formed through chemically homogeneous evolution in short-period stellar binaries , 2015, 1601.00007.

[57]  Tomasz Bulik,et al.  The first gravitational-wave source from the isolated evolution of two stars in the 40–100 solar mass range , 2016, Nature.

[58]  M. A. Sedda Birth, Life, and Death of Black Hole Binaries around Supermassive Black Holes: Dynamical Evolution of Gravitational Wave Sources , 2020, The Astrophysical Journal.

[59]  M. Henon Sur l'évolution dynamique des amas globulaires , 1961 .

[60]  G. Meynet,et al.  The spin of the second-born black hole in coalescing binary black holes , 2018, Astronomy & Astrophysics.

[61]  Michael Purrer,et al.  Hierarchical data-driven approach to fitting numerical relativity data for nonprecessing binary black holes with an application to final spin and radiated energy , 2016, 1611.00332.

[62]  Douglas C. Heggie,et al.  On black hole subsystems in idealized nuclear star clusters , 2013, 1308.4641.

[63]  The LIGO Scientific Collaboration,et al.  Astrophysical Implications of the Binary Black-Hole Merger GW150914 , 2016, 1602.03846.

[64]  B. Kocsis,et al.  Gravitational Waves and Intermediate-mass Black Hole Retention in Globular Clusters , 2017, 1711.00483.

[65]  M. Mapelli,et al.  The impact of electron-capture supernovae on merging double neutron stars , 2018, Monthly Notices of the Royal Astronomical Society.

[66]  Linhao Ma,et al.  Most Black Holes Are Born Very Slowly Rotating , 2019, The Astrophysical Journal.

[67]  M. Mapelli,et al.  The cosmic merger rate of neutron stars and black holes , 2018, Monthly Notices of the Royal Astronomical Society.

[68]  R. Capuzzo-Dolcetta,et al.  The MEGaN project II. Gravitational waves from intermediate-mass and binary black holes around a supermassive black hole , 2017, Monthly Notices of the Royal Astronomical Society.

[69]  Italy.,et al.  Self‐consistent simulations of nuclear cluster formation through globular cluster orbital decay and merging , 2008, 0804.4421.

[70]  R. Capuzzo-Dolcetta,et al.  The Globular Cluster Migratory Origin of Nuclear Star Clusters , 2014, 1405.7593.

[71]  D. Holz,et al.  COMPACT REMNANT MASS FUNCTION: DEPENDENCE ON THE EXPLOSION MECHANISM AND METALLICITY , 2011, 1110.1726.

[72]  B. Metzger,et al.  Constraining Stellar-mass Black Hole Mergers in AGN Disks Detectable with LIGO , 2018, The Astrophysical Journal.

[73]  S. Márka,et al.  AGN Disks Harden the Mass Distribution of Stellar-mass Binary Black Hole Mergers , 2019, The Astrophysical Journal.

[74]  P. K. Panda,et al.  GW190521: A Binary Black Hole Merger with a Total Mass of 150  M_{⊙}. , 2020, Physical review letters.

[75]  A. Loeb,et al.  Black hole–neutron star mergers from triples , 2019, Monthly Notices of the Royal Astronomical Society.

[76]  I. Mandel,et al.  DOUBLE COMPACT OBJECTS. I. THE SIGNIFICANCE OF THE COMMON ENVELOPE ON MERGER RATES , 2012, 1202.4901.

[77]  S. Zwart,et al.  Formation and evolution of binary neutron stars , 1997, astro-ph/9710347.

[78]  Sambaran Banerjee,et al.  Stellar-mass black holes in young massive and open stellar clusters and their role in gravitational-wave generation , 2016, 1611.09357.

[79]  Michael Zevin,et al.  Post-Newtonian dynamics in dense star clusters: Formation, masses, and merger rates of highly-eccentric black hole binaries , 2018, Physical Review D.

[80]  M. Branchesi,et al.  Dynamics of stellar black holes in young star clusters with different metallicities – II. Black hole–black hole binaries , 2014, 1404.7147.

[81]  M. Mapelli,et al.  The cosmic merger rate of stellar black hole binaries from the Illustris simulation , 2017, 1708.05722.

[82]  J. R. Hurley,et al.  Comprehensive analytic formulae for stellar evolution as a function of mass and metallicity , 2000, astro-ph/0001295.

[83]  Cristiano Porciani,et al.  On the Association of Gamma-Ray Bursts with Massive Stars: Implications for Number Counts and Lensing Statistics , 2001 .

[84]  Enrico Ramirez-Ruiz,et al.  THE FORMATION OF ECCENTRIC COMPACT BINARY INSPIRALS AND THE ROLE OF GRAVITATIONAL WAVE EMISSION IN BINARY–SINGLE STELLAR ENCOUNTERS , 2013, 1308.2964.

[85]  L. Rezzolla,et al.  PREDICTING THE DIRECTION OF THE FINAL SPIN FROM THE COALESCENCE OF TWO BLACK HOLES , 2007, 0904.2577.

[86]  Tokyo,et al.  Delay Time Distribution Measurement of Type Ia Supernovae by the Subaru/XMM-Newton Deep Survey and Implications for the Progenitor , 2008 .

[87]  Denmark,et al.  Distances and ages of NGC 6397, NGC 6752 and 47 Tuc , 2003, astro-ph/0307016.

[88]  B. Kocsis,et al.  The Rate of Stellar Mass Black Hole Scattering in Galactic Nuclei , 2019, The Astrophysical Journal.

[89]  M. B. PRIESTLEY Stochastic Problems , 1967, Nature.

[90]  D. Vanbeveren,et al.  Massive double compact object mergers: gravitational wave sources and r-process element production sites , 2013, 1307.0959.

[91]  Hans A. Bethe,et al.  Evolution of Binary Compact Objects That Merge , 1998, astro-ph/9802084.

[92]  S. Chandrasekhar Stochastic problems in Physics and Astronomy , 1943 .

[93]  C. Evans,et al.  Binary Interaction Dominates the Evolution of Massive Stars , 2012, Science.

[94]  I. Mandel,et al.  The chemically homogeneous evolutionary channel for binary black hole mergers: rates and properties of gravitational-wave events detectable by advanced LIGO , 2016, 1603.02291.

[95]  A. Gualandris,et al.  Gravitational wave sources from inspiralling globular clusters in the Galactic Centre and similar environments , 2018, 1804.06116.

[96]  Carlos O. Lousto,et al.  Modeling gravitational recoil from precessing highly spinning unequal-mass black-hole binaries , 2008, 0805.0159.

[97]  Bence Kocsis,et al.  Rapid and Bright Stellar-mass Binary Black Hole Mergers in Active Galactic Nuclei , 2016, 1602.03831.

[98]  A. Seth,et al.  HENIZE 2–10: THE ONGOING FORMATION OF A NUCLEAR STAR CLUSTER AROUND A MASSIVE BLACK HOLE , 2015, 1501.04567.

[99]  Luca Casagrande,et al.  THE AGES OF 55 GLOBULAR CLUSTERS AS DETERMINED USING AN IMPROVED METHOD ALONG WITH COLOR–MAGNITUDE DIAGRAM CONSTRAINTS, AND THEIR IMPLICATIONS FOR BROADER ISSUES , 2013, 1308.2257.

[100]  P. K. Panda,et al.  Properties and astrophysical implications of the 150 Msun binary black hole merger GW190521 , 2020, 2009.01190.

[101]  S. Banerjee Stellar-mass black holes in young massive and open stellar clusters and their role in gravitational-wave generation II , 2017, 1707.00922.

[102]  V. Kalogera,et al.  On the Origin of Black Hole Spin in High-mass X-Ray Binaries , 2018, The Astrophysical Journal.

[103]  Z. Haiman,et al.  Formation of GW190521 via Gas Accretion onto Population III Stellar Black Hole Remnants Born in High-redshift Minihalos , 2020, The Astrophysical Journal Letters.

[104]  M. Fujii,et al.  Gravitational-wave emission from binary black holes formed in open clusters , 2018, Monthly Notices of the Royal Astronomical Society.

[105]  M. Mapelli,et al.  The progenitors of compact-object binaries: impact of metallicity, common envelope and natal kicks , 2018, Monthly Notices of the Royal Astronomical Society.

[106]  Chris L. Fryer,et al.  Common envelope evolution: where we stand and how we can move forward , 2012, The Astronomy and Astrophysics Review.

[107]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[108]  F. Antonini ORIGIN AND GROWTH OF NUCLEAR STAR CLUSTERS AROUND MASSIVE BLACK HOLES , 2012, 1207.6589.

[109]  Fabio Antonini,et al.  DISSIPATIONLESS FORMATION AND EVOLUTION OF THE MILKY WAY NUCLEAR STAR CLUSTER , 2011, 1110.5937.

[110]  T. Bulik,et al.  MOCCA-SURVEY Database - I. Coalescing binary black holes originating from globular clusters , 2016, 1608.02520.

[111]  D. Holz,et al.  Impact of inter-correlated initial binary parameters on double black hole and neutron star mergers , 2018, Astronomy & Astrophysics.

[112]  William E. Harris,et al.  A CATALOG OF GLOBULAR CLUSTER SYSTEMS: WHAT DETERMINES THE SIZE OF A GALAXY'S GLOBULAR CLUSTER POPULATION? , 2013, 1306.2247.

[113]  B. Metzger,et al.  Assisted inspirals of stellar mass black holes embedded in AGN discs: solving the ‘final au problem’ , 2016, 1602.04226.

[114]  M. Fishbach,et al.  Are LIGO's Black Holes Made from Smaller Black Holes? , 2017, 1703.06869.

[115]  W. Hamann,et al.  Mass loss from late-type WN stars and its Z-dependence: very massive stars approaching the Eddington limit , 2008, 0803.0866.

[116]  C. Berry,et al.  Exploring the Lower Mass Gap and Unequal Mass Regime in Compact Binary Evolution , 2020, The Astrophysical Journal.

[117]  Y. Bouffanais,et al.  The Cosmic Merger Rate Density Evolution of Compact Binaries Formed in Young Star Clusters and in Isolated Binaries , 2020, Astrophysical Journal.

[118]  E. Berti,et al.  Escape speed of stellar clusters from multiple-generation black-hole mergers in the upper mass gap , 2019, Physical Review D.

[119]  Galactic distribution of merging neutron stars and black holes – prospects for short gamma-ray burst progenitors and LIGO/VIRGO , 2003, astro-ph/0303227.

[120]  M. Mapelli,et al.  Merging black holes in young star clusters , 2019, Monthly Notices of the Royal Astronomical Society.

[121]  S. Hawking,et al.  Black Holes in the Early Universe , 1974 .

[122]  Mario G. Lattanzi,et al.  Ages of globular clusters from hipparcos parallaxes of local subdwarfs , 1997 .

[123]  Bence Kocsis,et al.  Gravitational waves from scattering of stellar-mass black holes in galactic nuclei , 2008, 0807.2638.

[124]  Enrico Ramirez-Ruiz,et al.  Eccentric Black Hole Mergers in Dense Star Clusters: The Role of Binary–Binary Encounters , 2018, The Astrophysical Journal.

[125]  B. Kocsis,et al.  Black Hole Mergers from an Evolving Population of Globular Clusters. , 2018, Physical review letters.

[126]  Evolution of binary stars and the effect of tides on binary populations , 2002, astro-ph/0201220.

[127]  M. Mapelli,et al.  Very massive stars, pair-instability supernovae and intermediate-mass black holes with the sevn code , 2017, 1706.06109.

[128]  Davide Gerosa,et al.  Are merging black holes born from stellar collapse or previous mergers , 2017, 1703.06223.

[129]  A. Zezas,et al.  Compact Object Modeling with the StarTrack Population Synthesis Code , 2005, astro-ph/0511811.

[130]  C. Conselice,et al.  GW190521 from the Merger of Ultradwarf Galaxies. , 2020, Physical review letters.

[131]  M. Zevin,et al.  Black holes: The next generation—repeated mergers in dense star clusters and their gravitational-wave properties , 2019, Physical Review D.

[132]  K. Jedamzik Primordial Black Holes as Dark Matter , 2001 .

[133]  L. Girardi,et al.  PARSEC evolutionary tracks of massive stars up to 350 M ☉ at metallicities 0.0001 ≤ Z ≤ 0.04 , 2015, 1506.01681.

[134]  D. Lai,et al.  Hierarchical black hole mergers in multiple systems: constrain the formation of GW190412-, GW190814-, and GW190521-like events , 2020, 2009.10068.

[135]  Y. Bouffanais,et al.  GW190521 formation via three-body encounters in young massive star clusters , 2021, Monthly Notices of the Royal Astronomical Society.

[136]  The Ligo Scientific Collaboration,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral , 2017, 1710.05832.

[137]  Frederic A. Rasio,et al.  MERGING BLACK HOLE BINARIES IN GALACTIC NUCLEI: IMPLICATIONS FOR ADVANCED-LIGO DETECTIONS , 2016, 1606.04889.

[138]  E. Stanway,et al.  Dependence of gravitational wave transient rates on cosmic star formation and metallicity evolution history , 2019, Monthly Notices of the Royal Astronomical Society: Letters.

[139]  Simon Portegies Zwart,et al.  Young Massive Star Clusters , 2010, 1002.1961.

[140]  Hyung Mok Lee Evolution of galactic nuclei with 10-M⊙ black holes , 1995 .

[141]  M. Mapelli,et al.  IN SITU FORMATION OF SgrA* STARS VIA DISK FRAGMENTATION: PARENT CLOUD PROPERTIES AND THERMODYNAMICS , 2012, 1202.0555.

[142]  Douglas C. Heggie,et al.  Dynamical evolution of black hole subsystems in idealized star clusters , 2013, 1304.3401.

[143]  M. Kramer,et al.  Progenitors of gravitational wave mergers: binary evolution with the stellar grid-based code ComBinE , 2018, Monthly Notices of the Royal Astronomical Society.

[144]  Nathan Smith Mass Loss: Its Effect on the Evolution and Fate of High-Mass Stars , 2014 .

[145]  Jeremiah P. Ostriker,et al.  Dynamical Evolution of Globular Clusters , 1996 .

[146]  London,et al.  Mass-loss predictions for O and B stars as a function of metallicity , 2001, astro-ph/0101509.

[147]  Y. Zlochower,et al.  Gravitational recoil from accretion-aligned black-hole binaries , 2012, 1201.1923.

[148]  M. Mapelli,et al.  Merging black hole binaries with the SEVN code , 2018, Monthly Notices of the Royal Astronomical Society.

[149]  R. Gratton,et al.  Abundance Variations within Globular Clusters , 2004 .

[150]  E. Stanway,et al.  A consistent estimate for gravitational wave and electromagnetic transient rates , 2018, Monthly notices of the Royal Astronomical Society.

[151]  M. Mapelli Massive black hole binaries from runaway collisions: the impact of metallicity , 2016, 1604.03559.

[152]  Chris L. Fryer,et al.  ON THE MAXIMUM MASS OF STELLAR BLACK HOLES , 2009, 0904.2784.

[153]  M. J. Williams,et al.  Population Properties of Compact Objects from the Second LIGO–Virgo Gravitational-Wave Transient Catalog , 2020, 2010.14533.

[154]  Gongjie Li,et al.  Ordering the chaos: stellar black hole mergers from non-hierarchical triples , 2018 .

[155]  Bing Zhang,et al.  Growth of Stellar-mass Black Holes in Dense Molecular Clouds and GW190521 , 2020, 2009.11326.

[156]  Y. Zlochower,et al.  Further insight into gravitational recoil , 2007, 0708.4048.

[157]  S. Banerjee Stellar-mass black holes in young massive and open stellar clusters – IV. Updated stellar-evolutionary and black hole spin models and comparisons with the LIGO-Virgo O1/O2 merger-event data , 2020 .

[158]  P. Pani,et al.  GW190521 Mass Gap Event and the Primordial Black Hole Scenario. , 2021, Physical review letters.

[159]  N. Langer,et al.  A new route towards merging massive black holes , 2016, 1601.03718.

[160]  D. Perley,et al.  Are LGRBs biased tracers of star formation? Clues from the host galaxies of the $Swift$/BAT6 complete sample of bright LGRBs III: Stellar masses, star formation rates and metallicities at $z>1$. , 2019, 1901.02457.

[161]  Alessia Gualandris,et al.  Black hole growth through hierarchical black hole mergers in dense star clusters: implications for gravitational wave detections , 2018, Monthly Notices of the Royal Astronomical Society.

[162]  P. Madau,et al.  Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries , 2016, 1606.07887.

[163]  J. Gair,et al.  Extracting distribution parameters from multiple uncertain observations with selection biases , 2018, Monthly Notices of the Royal Astronomical Society.

[164]  F. Rasio,et al.  THE DYNAMICAL EVOLUTION OF STELLAR BLACK HOLES IN GLOBULAR CLUSTERS , 2014, 1409.0866.

[165]  Frederic A. Rasio,et al.  Binary Black Hole Mergers from Globular Clusters: Masses, Merger Rates, and the Impact of Stellar Evolution , 2016, 1602.02444.

[166]  M. Mapelli,et al.  Fingerprints of Binary Black Hole Formation Channels Encoded in the Mass and Spin of Merger Remnants , 2020, The Astrophysical Journal.

[167]  J. Greve,et al.  Evolution of massive close binaries , 1976 .

[168]  Johan Samsing,et al.  Eccentric Black Hole Mergers Forming in Globular Clusters , 2017, 1711.07452.

[169]  Advanced LIGO , 2014, 1411.4547.

[170]  N. Langer,et al.  Wind modelling of very massive stars up to 300 solar masses , 2011, 1105.0556.

[171]  Z. Haiman,et al.  Formation and Evolution of Compact-object Binaries in AGN Disks , 2019, The Astrophysical Journal.

[172]  R. Webbink Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae , 1984 .

[173]  Long Wang The survival of star clusters with black hole subsystems , 2019, Monthly Notices of the Royal Astronomical Society.

[174]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[175]  Y. Bouffanais,et al.  New insights on binary black hole formation channels after GWTC-2: young star clusters versus isolated binaries , 2021, Monthly Notices of the Royal Astronomical Society.

[176]  L. Spitler,et al.  Quantifying the coexistence of massive black holes and dense nuclear star clusters , 2009, 0907.5250.

[177]  J. K. Blackburn,et al.  GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run , 2020, 2010.14527.

[178]  M. J. Benacquista,et al.  Compact binaries in star clusters – I. Black hole binaries inside globular clusters , 2009, 0910.0546.