Na+‐driven ATP synthesis in Methanobacterium thermoautotrophicum and its differentiation from H+‐driven ATP synthesis by rhodamine 6G

[1]  V. Skulachev,et al.  Cytochrome d induction in Escherichia coli growing under unfavorable conditions , 1993, FEBS letters.

[2]  Masasuke Yoshida,et al.  A DNA fragment homologous to F1‐ATPase β subunit was amplified from genomic DNA of Methanosarcina barkeri Indication of an archaebacterial F‐type ATPase , 1992, FEBS letters.

[3]  G. Gottschalk,et al.  Energetics of methanogenesis studied in vesicular systems , 1992, Journal of bioenergetics and biomembranes.

[4]  J. Konisky,et al.  Energy transduction in the methanogen Methanococcus voltae is based on a sodium current , 1992, Journal of bacteriology.

[5]  G. Gottschalk,et al.  The methyl-tetrahydromethanopterin: Coenzyme M methyltransferase of Methanosarcina strain Gö1 is a primary sodium pump , 1992 .

[6]  V. Skulachev,et al.  Adaptation of Bacillus FTU and Escherichia coli to alkaline conditions: the Na(+)-motive respiration. , 1991, Biochimica et biophysica acta.

[7]  V. Skulachev Chemiosmotic systems in bioenergetics: H+-cycles and Na+-cycles , 1991, Bioscience reports.

[8]  I. Yamato,et al.  Primary structure of the α‐subunit of vacuolar‐type Na+‐ATPase inEnterococcus hirae Amplification of a 1000‐bp fragment by polymerase chain reaction , 1991 .

[9]  G. Gottschalk,et al.  Sodium bioenergetics in methanogens and acetogens , 1990 .

[10]  Y. Kakinuma,et al.  Amplification of the Na+‐ATPase of Streptococcus faecalis at alkaline pH , 1990, FEBS letters.

[11]  B. Kaesler,et al.  The sodium cycle in methanogenesis. CO2 reduction to the formaldehyde level in methanogenic bacteria is driven by a primary electrochemical potential of Na+ generated by formaldehyde reduction to CH4. , 1989, European journal of biochemistry.

[12]  V. Skulachev The sodium cycle: A novel type of bacterial energetics , 1989, Journal of bioenergetics and biomembranes.

[13]  L. Horovská,et al.  Na+‐driven ATP synthesis in Methanobacterium thermoautotrophicum can be modulated with sodium ion concentrations in the growth medium , 1988 .

[14]  J. Lancaster,et al.  Discrimination between transmembrane ion gradient‐driven and electron transfer‐driven ATP synthesis in the methanogenic bacteria , 1986 .

[15]  J. Lancaster,et al.  An electrogenic sodium‐translocating ATPase in Methanococcus voltae , 1986 .

[16]  R. Bachofen,et al.  Isolation and characterisation of a soluble ATPase from Methanobacterium thermoautotrophicum , 1986 .

[17]  J. Ricard,et al.  Electrostatic effects and the dynamics of enzyme reactions at the surface of plant cells. 3. Interplay between limited cell-wall autolysis, pectin methyl esterase activity and electrostatic effects in soybean cell walls. , 1986, European journal of biochemistry.

[18]  V. Skulachev,et al.  Membrane-linked energy transductions. Bioenergetic functions of sodium: H+ is not unique as a coupling ion. , 1985, European journal of biochemistry.

[19]  F. Sauer,et al.  Methane synthesis by membrane vesicles and a cytoplasmic cofactor isolated from Methanobacterium thermoautotrophicum. , 1984, The Biochemical journal.

[20]  K. Jarrell,et al.  Sodium‐dependent isoleucine transport in the methanogenic archaebacterium Methanococcus voltae , 1984 .

[21]  F. Sauer,et al.  Evidence for an internal electrochemical proton gradient in Methanobacterium thermoautotrophicum. , 1981, The Journal of biological chemistry.

[22]  T. Yoshimura,et al.  Rhodamine 6G, inhibitor of both H+-ejections from mitochondria energized with ATP and with respiratory substrates. , 1980, Biochimica et biophysica acta.

[23]  O. H. Lowry,et al.  Protein measurement with the Folin phenol reagent. , 1951, The Journal of biological chemistry.