Expressive power of monadic logics on words, trees, pictures, and graphs

We give a survey of the expressive power of various monadic logics on specific classes of finite labeled graphs, including words, trees, and pictures. Among the logics we consider, there are monadic secondorder logic and its existential fragment, the modal mu-calculus, and monadic least fixed-point logic. We focus on nesting-depth and quantifier alternation as a complexity measure of these logics.

[1]  André Arnold,et al.  p329 The µ-calculus alternation-depth hierarchy is strict on binary trees , 1999, RAIRO Theor. Informatics Appl..

[2]  Damian Niwinski On Fixed-Point Clones (Extended Abstract) , 1986, ICALP.

[3]  Julian C. Bradfield,et al.  The Modal µ-Calculus Alternation Hierarchy is Strict , 1998, Theor. Comput. Sci..

[4]  Antonio Restivo,et al.  Monadic Second-Order Logic Over Rectangular Pictures and Recognizability by Tiling Systems , 1996, Inf. Comput..

[5]  Klaus Reinhardt On Some Recognizable Picture-Languages , 1998, MFCS.

[6]  Radu Mateescu,et al.  Local Model-Checking of Modal Mu-Calculus on Acyclic Labeled Transition Systems , 2002, TACAS.

[7]  David Harel,et al.  Structure and Complexity of Relational Queries , 1980, FOCS.

[8]  Arnaud Durand,et al.  Nonerasing, Counting, and Majority over the Linear Time Hierarchy , 2002, Inf. Comput..

[9]  C. C. Elgot Decision problems of finite automata design and related arithmetics , 1961 .

[10]  Nicole Schweikardt,et al.  The Monadic Quantifier Alternation Hierarchy over Grids and Graphs , 2002, Inf. Comput..

[11]  Andreas Potthoff,et al.  Logische Klassifizierung regulärer Baumsprachen , 1994 .

[12]  J. Büchi Weak Second‐Order Arithmetic and Finite Automata , 1960 .

[13]  James W. Thatcher,et al.  Generalized finite automata theory with an application to a decision problem of second-order logic , 1968, Mathematical systems theory.

[14]  Giacomo Lenzi A Hierarchy Theorem for the µ-Calculus , 1996, ICALP.

[15]  Etienne Grandjean,et al.  Sorting, linear time and the satisfiability problem , 1996, Annals of Mathematics and Artificial Intelligence.

[16]  Oliver Matz Dot-depth, monadic quantifier alternation, and first-order closure over grids and pictures , 2002, Theor. Comput. Sci..

[17]  Colin Stirling,et al.  Modal Logics and mu-Calculi: An Introduction , 2001, Handbook of Process Algebra.

[18]  Oliver Matz On Piecewise Testable, Starfree, and Recognizable Picture Languages , 1998, FoSSaCS.

[19]  Oliver Matz One Quantifier Will Do in Existential Monadic Second-Order Logic over Pictures , 1998, MFCS.

[20]  Ronald Fagin Generalized first-order spectra, and polynomial. time recognizable sets , 1974 .

[21]  Nicole Schweikardt The Monadic Quantifier Alternation Hierarchy over Grids and Pictures , 1997, CSL.

[22]  Ronald Fagin,et al.  The Closure of Monadic NP , 2000, J. Comput. Syst. Sci..

[23]  Jerzy Marcinkowski,et al.  A Toolkit for First Order Extensions of Monadic Games , 2001, STACS.

[24]  Klaus Reinhardt The #a = #b Pictures Are Recognizable , 2001, STACS.

[25]  Frédéric Olive,et al.  Rudimentary Languages and Second Order Logic , 1997, Math. Log. Q..

[26]  Roberto Vaglica,et al.  Recognizable Picture Languages and Polyominoes , 2007, CAI.

[27]  Igor Walukiewicz Notes on the Propositional |-calculus: Completeness and Related Results , 1995 .

[28]  Wolfgang Thomas,et al.  The monadic quantifier alternation hierarchy over graphs is infinite , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[29]  Martin Otto An Note on the Number of Monadic Quantifiers in Monadic Sigma^1_1 , 1995, Inf. Process. Lett..

[30]  Orna Kupferman,et al.  Weak alternating automata and tree automata emptiness , 1998, STOC '98.

[31]  Wolfgang Thomas,et al.  Classifying Regular Events in Symbolic Logic , 1982, J. Comput. Syst. Sci..

[32]  Igor Walukiewicz,et al.  On the Expressive Completeness of the Propositional mu-Calculus with Respect to Monadic Second Order Logic , 1996, CONCUR.

[33]  Antonio Restivo,et al.  Recognizable Picture Languages , 1992, Int. J. Pattern Recognit. Artif. Intell..

[34]  Nicole Schweikardt On the Expressive Power of Monadic Least Fixed Point Logic , 2004, ICALP.

[35]  Dora Giammarresi Two-Dimensional Languages and Recognizable Functions , 1993, Developments in Language Theory.

[36]  Janusz A. Brzozowski,et al.  Dot-Depth of Star-Free Events , 1971, Journal of computer and system sciences (Print).

[37]  Wolfgang Thomas,et al.  Languages, Automata, and Logic , 1997, Handbook of Formal Languages.

[38]  John Doner,et al.  Tree Acceptors and Some of Their Applications , 1970, J. Comput. Syst. Sci..