Quadrics on complex Riemannian spaces of constant curvature, separation of variables and the Gaudin magnet

Integrable systems that are connected with orthogonal separation of variables in complex Riemannian spaces of constant curvature are considered herein. An isomorphism with the hyperbolic Gaudin magnet, previously pointed out by one of the authors, extends to coordinates of this type. The complete classification of these separable coordinate systems is provided by means of the corresponding L matrices for the Gaudin magnet. The limiting procedures (or e calculus) which relate various degenerate orthogonal coordinate systems play a crucial role in the classification of all such systems.

[1]  V. Kuznetsov Equivalence of two graphical calculi , 1992 .

[2]  V. Kuznetsov Quadrics on real Riemannian spaces of constant curvature: Separation of variables and connection with Gaudin magnet , 1992 .

[3]  V. Kuznetsov,et al.  Quantum Euler-Manakov top on the three-sphere S3 , 1991 .

[4]  V. Kuznetsov,et al.  Quantum Euler-Manakov top on the 3-sphere S3 , 1991 .

[5]  I. Komarov,et al.  Kowalewski's top on the Lie algebras o(4), e(3), and o(3,1) , 1990 .

[6]  E. Sklyanin Separation of variables in the Gaudin model , 1989 .

[7]  R. Dodd,et al.  Review: L. D. Faddeev and L. A. Takhtajan, Hamiltonian methods in the theory of solitons , 1988 .

[8]  W. Miller Mechanisms For Variable Separation In Partial Differential Equations And Their Relationship To Group , 1988 .

[9]  Leon A. Takhtajan,et al.  Hamiltonian methods in the theory of solitons , 1987 .

[10]  W. Miller,et al.  Separation of variables on n‐dimensional Riemannian manifolds. I. The n‐sphere Sn and Euclidean n‐space Rn , 1986 .

[11]  E. Kalnins Separation of variables for Riemannian spaces of constant curvature , 1986 .

[12]  G. Reid,et al.  Separation of variables for complex Riemannian spaces of constant curvature - I. Orthogonal separable coordinates for Snc and Enc , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[13]  W. Miller,et al.  The theory of orthogonal R-separation for Helmholtz equations , 1984 .

[14]  W. Miller,et al.  Intrinsic characterisation of orthogonal separation of one coordinate in the Hamilton-Jacobi equation , 1982 .

[15]  W. Miller,et al.  The wave equation and separation of variables on the complex sphere S4 , 1981 .

[16]  W. Miller,et al.  Lie Theory and the Wave Equation in Space-Time. 2. The Group $SO(4,\mathbb{C})$ , 1978 .

[17]  W. Dietz Separable coordinate systems for the Hamilton-Jacobi, Klein-Gordon and wave equations in curved spaces , 1976 .

[18]  N. Woodhouse Killing tensors and the separation of the Hamilton-Jacobi equation , 1975 .

[19]  N. Vilenkin Special Functions and the Theory of Group Representations , 1968 .

[20]  Luther Pfahler Eisenhart,et al.  Separable Systems of Stackel , 1934 .

[21]  W. Niven I. On ellipsoidal harmonics , 1891, Proceedings of the Royal Society of London.