Abdominal MRI at 3.0 T: the basics revisited.

OBJECTIVE The purpose of our article is to describe the underlying physics concepts of abdominal MRI at 3.0 T and their impact on signal-to-noise ratio, susceptibility artifacts, chemical shift artifacts, and dielectric effects. CONCLUSION Abdominal MR sequence protocols optimized for 1.5-T scanners should not be transferred to 3.0 T without substantial modification. In addition, specific patient groups--for example, large patients with ascites--are not well suited to undergo an abdominal MRI study at 3.0 T.

[1]  R. Edelman MR imaging of the pancreas: 1.5T versus 3T. , 2007, Magnetic resonance imaging clinics of North America.

[2]  H. Urbach,et al.  Hochfeld-Magnetresonanztomographie: Magnetische Anziehungs- und Rotationskräfte auf metallische Implantate bei 3,0 T* , 2004 .

[3]  R. Lenkinski,et al.  Breathhold abdominal and thoracic proton MR spectroscopy at 3T , 2003, Magnetic resonance in medicine.

[4]  F. Shellock,et al.  Drug eluting coronary stent: in vitro evaluation of magnet resonance safety at 3 Tesla. , 2005, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance.

[5]  3.0-T high-field magnetic resonance imaging of the female pelvis: preliminary experiences , 2005, European Radiology.

[6]  F. Shellock,et al.  Detachable coil for cerebral aneurysms: in vitro evaluation of magnetic field interactions, heating, and artifacts at 3T. , 2005, AJNR. American journal of neuroradiology.

[7]  E. Merkle,et al.  A review of MR physics: 3T versus 1.5T. , 2007, Magnetic resonance imaging clinics of North America.

[8]  Jacob Sosna,et al.  Determinations of prostate volume at 3-Tesla using an external phased array coil: comparison to pathologic specimens. , 2003, Academic radiology.

[9]  T. Foster,et al.  A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1-100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. , 1984, Medical physics.

[10]  Diego R. Martín,et al.  MR colonography: 1.5T versus 3T. , 2007, Magnetic resonance imaging clinics of North America.

[11]  Jean A. Tkach,et al.  Cardiac pacemakers, ICDs, and loop recorder: evaluation of translational attraction using conventional ("long-bore") and "short-bore" 1.5- and 3.0-Tesla MR systems. , 2003, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance.

[12]  R. Semelka,et al.  Liver MR imaging: 1.5T versus 3T. , 2007, Magnetic resonance imaging clinics of North America.

[13]  E. Merkle,et al.  MR imaging of the adrenal glands: 1.5T versus 3T. , 2007, Magnetic resonance imaging clinics of North America.

[14]  Robert V Mulkern,et al.  Double inversion black‐blood fast spin‐echo imaging of the human heart: A comparison between 1.5T and 3.0T , 2003, Journal of magnetic resonance imaging : JMRI.

[15]  J. Lee,et al.  3 Tesla Magnetic Resonance Imaging (MRI)—Is it Ready for Prime Time Clinical Applications? , 2007 .

[16]  Frank G Shellock,et al.  Biomedical implants and devices: Assessment of magnetic field interactions with a 3.0‐Tesla MR system , 2002, Journal of magnetic resonance imaging : JMRI.

[17]  Diego R. Martín,et al.  Future directions in MR imaging of the female pelvis. , 2006, Magnetic resonance imaging clinics of North America.

[18]  Yu-Chung N. Cheng,et al.  Magnetic Resonance Imaging: Physical Principles and Sequence Design , 1999 .

[19]  Hans-Ulrich Kauczor,et al.  Lung MRI at 1.5 and 3 Tesla: Observer Preference Study and Lesion Contrast Using Five Different Pulse Sequences , 2007, Investigative radiology.

[20]  J. Lewin,et al.  Needle localization in MR-guided biopsy and aspiration: effects of field strength, sequence design, and magnetic field orientation. , 1996, AJR. American journal of roentgenology.

[21]  W. Edelstein,et al.  The intrinsic signal‐to‐noise ratio in NMR imaging , 1986, Magnetic resonance in medicine.

[22]  A. Aisen,et al.  Abdominal MR imaging at 3.0 T. , 2007, Radiographics : a review publication of the Radiological Society of North America, Inc.

[23]  M. Kataoka,et al.  MR imaging of the female pelvis at 3 Tesla: Evaluation of image homogeneity using different dielectric pads , 2007, Journal of magnetic resonance imaging : JMRI.

[24]  R. Lenkinski,et al.  Body MR imaging at 3.0 T: understanding the opportunities and challenges. , 2007, Radiographics : a review publication of the Radiological Society of North America, Inc.

[25]  E. Merkle,et al.  MR cholangiopancreatography: 1.5T versus 3T. , 2007, Magnetic resonance imaging clinics of North America.

[26]  Jean A. Tkach,et al.  Neurostimulation systems: Assessment of magnetic field interactions associated with 1.5‐ and 3‐Tesla MR systems , 2005, Journal of magnetic resonance imaging : JMRI.

[27]  R. Low,et al.  Abdominal MRI advances in the detection of liver tumours and characterisation. , 2007, The Lancet. Oncology.

[28]  S. Schoenberg,et al.  Abdominal and pelvic MR angiography. , 2007, Magnetic resonance imaging clinics of North America.

[29]  Michael B. Smith,et al.  Central brightening due to constructive interference with, without, and despite dielectric resonance , 2005, Journal of magnetic resonance imaging : JMRI.

[30]  N. Rofsky,et al.  MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. , 2004, Radiology.

[31]  Allen D. Elster,et al.  Questions & answers in magnetic resonance imaging , 1994 .

[32]  S. C. Ladd,et al.  MR-Kolonographie: Technik, Indikationen und Befunde , 2008, Der Radiologe.