Uso de modelos matemáticos de convergencia para el diseño de algoritmos evolutivos distribuidos con migración auto-adaptativa Using mathematical models of convergence to design self adaptive migration schedule for distributed evolutionary algorithms
暂无分享,去创建一个
[1] Enrique Alba,et al. Selection pressure and takeover time of distributed evolutionary algorithms , 2010, GECCO '10.
[2] Christian Blum,et al. Metaheuristics in combinatorial optimization: Overview and conceptual comparison , 2003, CSUR.
[3] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[4] Enrique Alba,et al. Benchmarking a Wide Spectrum of Metaheuristic Techniques for the Radio Network Design Problem , 2009, IEEE Transactions on Evolutionary Computation.
[5] Thomas Bäck,et al. Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .
[6] Francisco Luna,et al. Advances in parallel heterogeneous genetic algorithms for continuous optimization , 2004 .
[7] Enrique Alba,et al. A survey of parallel distributed genetic algorithms , 1999 .
[8] Enrique Alba,et al. Efficient parallel LAN/WAN algorithms for optimization. The mallba project , 2006, Parallel Comput..
[9] Janez Demsar,et al. Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..
[10] Pierre Kuonen,et al. Parallel Island-Based Genetic Algorithm for Radio Network Design , 1997, J. Parallel Distributed Comput..
[11] Enrique Alba,et al. Theoretical models of selection pressure for dEAs: topology influence , 2005, 2005 IEEE Congress on Evolutionary Computation.
[12] Enrique Alba,et al. Parallelism and evolutionary algorithms , 2002, IEEE Trans. Evol. Comput..