Small-angle scattering and scale-dependent heterogeneity

Although small-angle scattering is often discussed qualitatively in terms of material heterogeneity, when it comes to quantitative data analysis this notion becomes somehow hidden behind the concept of correlation function. In the present contribution, a quantitative measure of heterogeneity is defined, it is shown how it can be calculated from scattering data, and its structural significance for the purpose of material characterization is discussed. Conceptually, the procedure consists of using a finite probe volume to define a local average density at any point of the material; the heterogeneity is then quantitatively defined as the fluctuations of the local average density when the probe volume is moved systematically through the sample. Experimentally, it is shown that the so-defined heterogeneity can be estimated by projecting the small-angle scattering intensity onto the form factor of the chosen probe volume. Choosing probe volumes of various sizes and shapes enables one to comprehensively characterize the heterogeneity of a material over all its relevant length scales. General results are derived for asymptotically small and large probes in relation to the material surface area and integral range. It is also shown that the correlation function is equivalent to a heterogeneity calculated with a probe volume consisting of two points only. The interest of scale-dependent heterogeneity for practical data analysis is illustrated with experimental small-angle X-ray scattering patterns measured on a micro- and mesoporous material, on a gel, and on a semi-crystalline polyethylene sample. Using different types of probes to analyse a given scattering pattern enables one to focus on different structural characteristics of the material, which is particularly useful in the case of hierarchical structures.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  W. Ehrenberg,et al.  Small-Angle X-Ray Scattering , 1952, Nature.

[3]  G. Fournet,et al.  Small‐Angle Scattering of X‐Rays , 1956 .

[4]  H. R. Anderson,et al.  Scattering by an Inhomogeneous Solid. II. The Correlation Function and Its Application , 1957 .

[5]  Kolloid-Gesellschaft Kolloid-Zeitschrift & Zeitschrift für Polymere , 1962 .

[6]  G. Porod,et al.  Röntgenkleinwinkelstreuung an kolloiden Systemen Asymptotisches Verhalten der Streukurven , 1962 .

[7]  S. J. Gregg,et al.  Adsorption Surface Area and Porosity , 1967 .

[8]  Masao Kakudo,et al.  Small Angle Scattering of X-Rays , 1968 .

[9]  D. Tchoubar,et al.  Interprétation de la diffusion centrale des rayons X par les systèmes poreux. II. Exemples d'application , 1969 .

[10]  J. Goodisman,et al.  Scattering from a Multiphase System , 1971 .

[11]  W. Ruland Small-angle scattering of two-phase systems: determination and significance of systematic deviations from Porod's law , 1971 .

[12]  O. Glatter,et al.  A new method for the evaluation of small‐angle scattering data , 1977 .

[13]  O. Glatter,et al.  19 – Small-Angle X-ray Scattering , 1973 .

[14]  S. Enzo,et al.  Correlation functions of amorphous multiphase systems , 1981 .

[15]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[16]  D. Chandler,et al.  Introduction To Modern Statistical Mechanics , 1987 .

[17]  J. Goodisman,et al.  On the Porod law , 1988 .

[18]  G. R. Satchler Elementary Scattering Theory , 1990 .

[19]  Salvatore Torquato,et al.  Local volume fraction fluctuations in heterogeneous media , 1990 .

[20]  C. Lantuéjoul,et al.  Ergodicity and integral range , 1991 .

[21]  P. W. Schmidt,et al.  Small-angle scattering studies of disordered, porous and fractal systems , 1991 .

[22]  S. Ciccariello Integral expressions of the derivatives of the small‐angle scattering correlation function , 1995 .

[23]  Jan Skov Pedersen,et al.  Analysis of small-angle scattering data from colloids and polymer solutions: modeling and least-squares fitting , 1997 .

[24]  P. Levitz,et al.  Off-lattice reconstruction of porous media: critical evaluation, geometrical confinement and molecular transport , 1998 .

[25]  Fredrickson,et al.  Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores , 1998, Science.

[26]  D I Svergun,et al.  Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. , 1999, Biophysical journal.

[27]  J. Chilès,et al.  Geostatistics: Modeling Spatial Uncertainty , 1999 .

[28]  A. Craievich,et al.  Structure characterization and mechanism of growth of PbTe nanocrystals embedded in a silicate glass. , 2002, Physical review letters.

[29]  S. Torquato Random Heterogeneous Materials , 2002 .

[30]  Statistical Physics for cosmic structures , 2001, astro-ph/0110169.

[31]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[32]  D. Jeulin,et al.  Determination of the size of the representative volume element for random composites: statistical and numerical approach , 2003 .

[33]  K. Knorr,et al.  Small-angle x-ray diffraction of Kr in mesoporous silica: Effects of microporosity and surface roughness , 2005 .

[34]  P. Fratzl,et al.  Diffracting “stacks of cards” - some thoughts about small-angle scattering from bone , 2005 .

[35]  S. Funari,et al.  Scattering curves of ordered mesoscopic materials. , 2005, The journal of physical chemistry. B.

[36]  Wolfgang Wagermaier,et al.  Cooperative deformation of mineral and collagen in bone at the nanoscale , 2006, Proceedings of the National Academy of Sciences.

[37]  M. Bellac Elementary scattering theory , 2021, Subatomic Physics.

[38]  C. Gommes,et al.  Branching, aggregation, and phase separation during the gelation of tetraethoxysilane , 2007 .

[39]  C. Gommes,et al.  Structure development of resorcinol-formaldehyde gels: microphase separation or colloid aggregation. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  Hakobyan Yeranuhi,et al.  Random Heterogeneous Materials , 2008 .

[41]  P. Fratzl,et al.  Capillarity-driven deformation of ordered nanoporous silica , 2009 .

[42]  C. Gommes,et al.  Quantitative Characterization of Pore Corrugation in Ordered Mesoporous Materials Using Image Analysis of Electron Tomograms , 2009 .

[43]  Chase E. Zachary,et al.  Hyperuniformity in point patterns and two-phase random heterogeneous media , 2009, 0910.2172.

[44]  W. Gille Scattering properties and structure functions of Boolean models , 2011 .

[45]  S. Torquato,et al.  Microstructural degeneracy associated with a two-point correlation function and its information content. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  S. Torquato,et al.  Density of States for a specified correlation function and the energy landscape. , 2012, Physical review letters.

[47]  C. Gommes,et al.  Mesoscale Characterization of Nanoparticles Distribution Using X-ray Scattering. , 2015, Angewandte Chemie.

[48]  J. Janek,et al.  Reaction Mechanism and Surface Film Formation of Conversion Materials for Lithium- and Sodium-Ion Batteries: An XPS Case Study on Sputtered Copper Oxide (CuO) Thin Film Model Electrodes , 2016 .

[49]  C. Gommes,et al.  Small-Angle Scattering Analysis of Empty or Loaded Hierarchical Porous Materials , 2016 .