Picosecond pulse generation at two wavelengths by simultaneous active mode locking in an Er-doped fiber laser with wide-bandwidth (>1 nm) nonchirped fiber Bragg gratings

Generation of picosecond pulses at two distinct wavelengths is interesting for wavelength-division-multiplexing, fiber communication and sensing. For this purpose, we achieved harmonic active mode locking simultaneously at two wavelengths separated by about 15 m in an Erbium-doped fiber laser. Dual- wavelength lasing was obtained with two wide-bandwidth (greater than 1 nm) nonchirped high-reflectivity fiber Bragg gratings inserted in the laser cavity. The fiber Bragg gratings were written with 275-nm light from an Ar laser in hydrogen-loaded fibers. Optical path lengths and losses were carefully adjusted at each wavelength to obtain perfect mode locking at both wavelengths. Total cavity dispersion was set in the anomalous dispersion regime and optimized at each wavelength independently to generate solitons. Pulses at 3-GHz repetition rate were obtained at two wavelengths simultaneously with pulse widths of 16 ps and 13 ps, at 1547 nm and 1562 nm respectively. Time-bandwidth products of 0.37 and 0.34 respectively confirmed that the pulses were nearly transform-limited at each wavelength.