Modeling of fundamental phenomena in welds

Recent advances in the mathematical modeling of fundamental phenomena in welds are summarized. State of the art mathematical models, advances in computational techniques, emerging high-performance computers, and experimental validation techniques have provided significant insight into the fundamental factors that control the development of the weldment. The current status and scientific issues in the areas of heat and fluid flow in welds, heat source-metal interaction, solidification microstructure, and phase transformations are assessed. Future research areas of major importance for understanding the fundamental phenomena in weld behaviour are identified.

[1]  Steve Brown,et al.  Computer simulation of the effects of alloy variables on the grain structures of castings , 1989 .

[2]  R. W. Reed,et al.  Stress induced transformation to bainite in Fe–Cr–Mo–C pressure vessel steel , 1991 .

[3]  T. DebRoy,et al.  Free surface flow and heat transfer in conduction mode laser welding , 1988 .

[4]  T. DebRoy,et al.  Effects of oxygen and sulfur on alloying element vaporization rates during laser welding , 1988 .

[5]  David Turnbull,et al.  Kinetics of Heterogeneous Nucleation , 1950 .

[6]  P. Voorhees,et al.  Ostwald ripening during liquid phase sintering—Effect of volume fraction on coarsening kinetics , 1984 .

[7]  M. Uda,et al.  Solubility of Nitrogen in Arc- and Levitation-Melted Iron and Iron Alloys , 1969 .

[8]  Sumio Kobayashi,et al.  Solute redistribution during solidification with diffusion in solid phase: A theoretical analysis , 1988 .

[9]  R. Trivedi,et al.  Theory of eutectic growth under rapid solidification conditions , 1987 .

[10]  Daryush K. Aidun,et al.  Three-dimensional transient model for arc welding process , 1989 .

[11]  M. Rappaz,et al.  Modelling of microstructure formation in solidification processes , 1989 .

[12]  P. J. Alberry,et al.  Computer model for prediction of heat-affectedzone microstructures in multipass weldments , 1982 .

[13]  Sindo Kou,et al.  Fluid flow and weld penetration in stationary arc welds , 1985 .

[14]  G. Dunn,et al.  Metal vapors in gas tungsten arcs: part ii. theoretical calculations of transport properties , 1986 .

[15]  G. Weatherly,et al.  Effect of nitrogen on properties of submerged arc weld metal , 1988 .

[16]  S. David,et al.  Analysis of solidification microstructures in Fe-Ni-Cr single-crystal welds , 1990 .

[17]  C. Gandin,et al.  Three-dimensional probabilistic simulation of solidification grain structures: Application to superalloy precision castings , 1993 .

[18]  W. Kurz,et al.  The coupled zone of rapidly solidified AlSi alloys in laser treatment , 1992 .

[19]  P. S. Sahni,et al.  Computer simulation of grain growth—I. Kinetics , 1984 .

[20]  T. DebRoy,et al.  Energy absorption by metal‐vapor‐dominated plasma during carbon dioxide laser welding of steels , 1990 .

[21]  Anthony Tyson,et al.  Mapping Dark Matter with Gravitational Lenses , 1992 .

[22]  Ø. Grong,et al.  HAZ grain growth mechanisms in welding of low carbon microalloyed steels , 1986 .

[23]  J. Mazumder,et al.  Visualization of a laser melt pool. , 1990, Applied optics.

[24]  H. Exner,et al.  Numerical modelling of dendritic solidification in aluminium-rich AlCuMg alloys , 1990 .

[25]  G. Abbaschian,et al.  The effect of solidification rate on microsegregation , 1986 .

[26]  H. G. Kraus Thermal Finite Element Formulation and Solution Versus Experimental Results for Thin-Plate GTA Welding , 1986 .

[27]  G. Lesoult,et al.  Influence des conditions de solidification sur le déroulement de la solidification des aciers inoxydables austénitiques , 1988 .

[28]  J. Hunt,et al.  Steady state columnar and equiaxed growth of dendrites and eutectic , 1984 .

[29]  A. O. Kluken,et al.  Mechanisms of inclusion formation in Al−Ti−Si−Mn deoxidized steel weld metals , 1989 .

[30]  T. DebRoy,et al.  Current Issues and Problems in Welding Science , 1992, Science.

[31]  Todd J. Rockstroh,et al.  Spectroscopic studies of plasma during cw laser materials interaction , 1987 .

[32]  Julian Szekely,et al.  Heat- and fluid-flow phenomena in weld pools , 1984, Journal of Fluid Mechanics.

[33]  J. Goldak,et al.  Computer modeling of heat flow in welds , 1986 .

[34]  Michael F. Ashby,et al.  A first report on diagrams for grain growth in welds , 1982 .

[35]  P. W. Fuerschbach,et al.  On the weldability, composition, and hardness of pulsed and continuous Nd:YAG laser welds in aluminum alloys 6061,5456, and 5086 , 1988 .

[36]  T. DebRoy,et al.  Probing laser induced metal vaporization by gas dynamics and liquid pool transport phenomena , 1991 .

[37]  P. J. Alberry,et al.  Computer model for predicting heat-affected-zone structures in mechanized tungsteninert gas weld deposits , 1983 .

[38]  J. Goldak,et al.  A new finite element model for welding heat sources , 1984 .

[39]  James S. Langer,et al.  Issues and Opportunities in Materials Research , 1992 .

[40]  D. R. Atthey A mathematical model for fluid flow in a weld pool at high currents , 1980, Journal of Fluid Mechanics.

[41]  Thomas Zacharia,et al.  Computational modeling of stationary gastungsten-arc weld pools and comparison to stainless steel 304 experimental results , 1991 .

[42]  R. Smith,et al.  Dynamic simulation of crystal growth by Monte Carlo method—II. Ingot microstructures , 1992 .

[43]  C. Gandin,et al.  Probabilistic modelling of microstructure formation in solidification processes , 1993 .

[44]  B. Gretoft,et al.  A model for the development of microstructure in low-alloy steel (Fe-Mn-Si-C) weld deposits , 1985 .

[45]  R. Trivedi,et al.  Microstructure and Phase Selection in Laser Treatment of Materials , 1992 .

[46]  W. Kurz,et al.  The microstructure of rapidly solidified AlFe alloys subjected to laser surface treatment , 1990 .

[47]  J. Mazumder,et al.  Control of Magnesium Loss During Laser Welding of Al-5083 Using a Plasma Suppression Technique , 1985 .

[48]  T. DebRoy,et al.  Alloying element vaporization and weld pool temperature during laser welding of AlSl 202 stainless steel , 1984 .

[49]  Wilfried Kurz,et al.  Solidification microstructures: A conceptual approach , 1994 .

[50]  R. Sekerka,et al.  Stability of a Planar Interface During Solidification of a Dilute Binary Alloy , 1964 .

[51]  T. DebRoy,et al.  Nitrogen activity determination in plasmas , 1992 .

[52]  W. Kurz,et al.  Experiments on Dendrite Branch Detachment in the Succinonitrile-Camphor Alloy , 1987 .

[53]  W. Boettinger,et al.  The Effect of Rapid Solidification Velocity on the Microstructure of Ag-Cu Alloys , 1984 .

[54]  T. DebRoy,et al.  Calculation of weld metal composition change in high-power conduction mode carbon dioxide laser-welded stainless steels , 1993 .

[55]  A. Block-bolten,et al.  Metal vaporization from weld pools , 1984 .

[56]  H. Bhadeshia,et al.  Kinetics of reconstructive austenite to ferrite transformation in low alloy steels , 1992 .

[57]  M. Zimmermann,et al.  Laser resolidification of the AlAl2Cu eutectic: The coupled zone , 1992 .

[58]  Wilfried Kurz,et al.  Theory of Microstructural Development during Rapid Solidification , 1986 .

[59]  Michael F. Ashby,et al.  A second report on diagrams of microstructure and hardness for heat-affected zones in welds , 1984 .