Reinforcement of Elastomers

[1]  L. Mullins,et al.  Stress softening in rubber vulcanizates. Part I. Use of a strain amplification factor to describe the elastic behavior of filler‐reinforced vulcanized rubber , 1965 .

[2]  L. Mullins,et al.  Stress Softening in Rubber Vulcanizates. Part I. Use of a Strain Amplification Factor to Describe Elastic Behavior of Filler-Reinforced Vulcanized Rubber , 1966 .

[3]  G. Batchelor,et al.  The determination of the bulk stress in a suspension of spherical particles to order c2 , 1972, Journal of Fluid Mechanics.

[4]  E. M. Dannenberg,et al.  The Effects of Surface Chemical Interactions on the Properties of Filler-Reinforced Rubbers , 1975 .

[5]  Avrom I. Medalia,et al.  Effect of Carbon Black on Dynamic Properties of Rubber Vulcanizates , 1978 .

[6]  G Kraus,et al.  Mechanical losses in carbon-black-filled rubbers , 1984 .

[7]  G. Heinrich,et al.  Rubber elasticity of polymer networks: Theories , 1988 .

[8]  S. Edwards,et al.  The tube model theory of rubber elasticity , 1988 .

[9]  J. Donnet,et al.  Characterization of Fillers in Vulcanizates According to the Einstein-Guth-Gold Equation , 1990 .

[10]  S. Havlin,et al.  Fractals and Disordered Systems , 1991 .

[11]  B. Meissner Bound rubber theory and experiment , 1993 .

[12]  G. Heinrich,et al.  Contribution of entanglements to the mechanical properties of carbon black-filled polymer networks , 1993 .

[13]  G. Heinrich,et al.  Disorder-induced enhancement of polymer adsorption : a model for the rubber-polymer interaction in filled rubbers , 1994 .

[14]  G. Heinrich,et al.  Fractal Structures in Carbon Black Reinforced Rubbers , 1995 .

[15]  Richter,et al.  Small-angle neutron scattering investigation of topological constraints and tube deformation in networks. , 1995, Physical review letters.

[16]  V. Urban,et al.  SANS Investigations of Topological Constraints in Networks Made from Triblock Copolymers , 1996 .

[17]  C. Tricot,et al.  Modeling carbon black reinforcement in rubber compounds , 1996 .

[18]  Yu-Der Lee,et al.  Strain‐dependent dynamic properties of filled rubber network systems , 1996 .

[19]  J. Leblanc A molecular explanation for the origin of bound rubber in carbon black filled rubber compounds , 1997 .

[20]  M. Kaliske,et al.  Theoretical and numerical formulation of a molecular based constitutive tube-model of rubber elasticity , 1997 .

[21]  Yu-Der Lee,et al.  Strain‐dependent dynamic properties of filled rubber network systems, 2: The physical meaning of parameters in the L‐N‐B model and their applicability , 1997 .

[22]  G. Heinrich,et al.  Structure and properties of reinforcing fractal filler networks in elastomers , 1997 .

[23]  S. Friedlander,et al.  Elastic behavior of nanoparticle chain aggregates , 1998 .

[24]  Polymer adsorption on heterogeneous surfaces , 1998, cond-mat/9802193.

[25]  Sotiris E. Pratsinis,et al.  Fractal Analysis of Flame-Synthesized Nanostructured Silica and Titania Powders Using Small-Angle X-ray Scattering , 1998 .

[26]  E. Hempel,et al.  Kinetic structure of glass transition in polymer interfaces between filler and SBR matrix , 1998 .

[27]  B. Meissner,et al.  Experimental testing of the polymer–filler gel formation theory. II. , 1998 .

[28]  Alan Muhr,et al.  Constitutive Models for Rubber , 1999 .

[29]  T. Vilgis,et al.  Universal Properties of Filled Rubbers: Mechanisms for Reinforcement on Different Length Scales , 1999 .

[30]  D. Richter,et al.  Matrix Chain Deformation in Reinforced Networks: a SANS Approach , 1999 .

[31]  Burkett,et al.  Prehistoric polymers: rubber processing in ancient mesoamerica , 1999, Science.

[32]  M. Kaliske,et al.  An extended tube-model for rubber elasticity : Statistical-mechanical theory and finite element implementation , 1999 .

[33]  J. Oberdisse,et al.  Simulation of aggregate structure and SANS-spectra in filled elastomers , 2000 .

[34]  S. Friedlander,et al.  Elastic behavior of nanoparticle chain aggregates: A hypothesis for polymer–filler behavior , 2000 .

[35]  M. Klüppel,et al.  A generalized tube model of rubber elasticity and stress softening of filler reinforced elastomer systems , 2000 .

[36]  J. Kohlbrecher,et al.  Chain deformation in filled elastomers: a SANS approach , 2000 .

[37]  Sung‐Seen Choi Filler-polymer interactions in both silica and carbon black-filled styrene-butadiene rubber compounds , 2001 .

[38]  G. Heinrich,et al.  A hypothetical mechanism of carbon black formation based on molecular ballistic deposition , 2001 .

[39]  Andrzej Kloczkowski,et al.  Monte Carlo simulations on reinforcement of an elastomer by oriented prolate particles , 2001 .

[40]  D. Richter,et al.  Filled elastomers: polymer chain and filler characterization by a SANS–SAXS approach , 2002 .

[41]  Gert Heinrich,et al.  Recent Advances in the Theory of Filler Networking in Elastomers , 2002 .