Galactic Stellar and Substellar Initial Mass Function

We review recent determinations of the present‐day mass function (PDMF) and initial mass function (IMF) in various components of the Galaxy—disk, spheroid, young, and globular clusters—and in conditions characteristic of early star formation. As a general feature, the IMF is found to depend weakly on the environment and to be well described by a power‐law form for m≳1 M⊙ and a lognormal form below, except possibly for early star formation conditions. The disk IMF for single objects has a characteristic mass around mc ∼ 0.08 M⊙ and a variance in logarithmic mass σ ∼ 0.7, whereas the IMF for multiple systems has mc ∼ 0.2 M⊙ and σ ∼ 0.6. The extension of the single MF into the brown dwarf regime is in good agreement with present estimates of L‐ and T‐dwarf densities and yields a disk brown dwarf number density comparable to the stellar one, nBD ∼ n* ∼ 0.1 pc−3. The IMF of young clusters is found to be consistent with the disk field IMF, providing the same correction for unresolved binaries, confirming the fact that young star clusters and disk field stars represent the same stellar population. Dynamical effects, yielding depletion of the lowest mass objects, are found to become consequential for ages ≳130 Myr. The spheroid IMF relies on much less robust grounds. The large metallicity spread in the local subdwarf photometric sample, in particular, remains puzzling. Recent observations suggest that there is a continuous kinematic shear between the thick‐disk population, present in local samples, and the genuine spheroid one. This enables us to derive only an upper limit for the spheroid mass density and IMF. Within all the uncertainties, the latter is found to be similar to the one derived for globular clusters and is well represented also by a lognormal form with a characteristic mass slightly larger than for the disk, mc ∼ 0.2–0.3 M⊙, excluding a significant population of brown dwarfs in globular clusters and in the spheroid. The IMF characteristic of early star formation at large redshift remains undetermined, but different observational constraints suggest that it does not extend below ∼1 M⊙. These results suggest a characteristic mass for star formation that decreases with time, from conditions prevailing at large redshift to conditions characteristic of the spheroid (or thick disk) to present‐day conditions. These conclusions, however, remain speculative, given the large uncertainties in the spheroid and early star IMF determinations. These IMFs allow a reasonably robust determination of the Galactic present‐day and initial stellar and brown dwarf contents. They also have important galactic implications beyond the Milky Way in yielding more accurate mass‐to‐light ratio determinations. The mass‐to‐light ratios obtained with the disk and the spheroid IMF yield values 1.8–1.4 times smaller than for a Salpeter IMF, respectively, in agreement with various recent dynamical determinations. This general IMF determination is examined in the context of star formation theory. None of the theories based on a Jeans‐type mechanism, where fragmentation is due only to gravity, can fulfill all the observational constraints on star formation and predict a large number of substellar objects. On the other hand, recent numerical simulations of compressible turbulence, in particular in super‐Alfvénic conditions, seem to reproduce both qualitatively and quantitatively the stellar and substellar IMF and thus provide an appealing theoretical foundation. In this picture, star formation is induced by the dissipation of large‐scale turbulence to smaller scales through radiative MHD shocks, producing filamentary structures. These shocks produce local nonequilibrium structures with large density contrasts, which collapse eventually in gravitationally bound objects under the combined influence of turbulence and gravity. The concept of a single Jeans mass is replaced by a distribution of local Jeans masses, representative of the lognormal probability density function of the turbulent gas. Objects below the mean thermal Jeans mass still have a possibility to collapse, although with a decreasing probability.

[1]  A. Siebert,et al.  Vertical distribution of Galactic disk stars: III. The Galactic disk surface mass density from red clump giants , 2005, astro-ph/0510431.

[2]  P. Hauschildt,et al.  Evolutionary Models for Low Mass Stars and Brown Dwarfs at Young Ages , 2003 .

[3]  J. B. Marquette,et al.  Limits on Galactic dark matter with 5 years of EROS SMC data , 2002, astro-ph/0212176.

[4]  Gilles Chabrier,et al.  The Galactic Disk Mass Function: Reconciliation of the Hubble Space Telescope and Nearby Determinations , 2003, astro-ph/0302511.

[5]  R. Rich,et al.  LSR 0602+3910: Discovery of a Bright Nearby L-Type Brown Dwarf , 2003, astro-ph/0301282.

[6]  Laird M. Close,et al.  Detection of Nine M8.0-L0.5 Binaries: The Very Low Mass Binary Population and Its Implications for Brown Dwarf and Very Low Mass Star Formation , 2003, astro-ph/0301095.

[7]  France,et al.  Brown dwarfs in the Pleiades cluster: Clues to the substellar mass function , , 2002, astro-ph/0212571.

[8]  Volker Bromm,et al.  The formation of a star cluster: predicting the properties of stars and brown dwarfs , 2002, astro-ph/0212380.

[9]  J. Makino,et al.  Dynamical evolution of star clusters in tidal fields , 2002, astro-ph/0211471.

[10]  L. Hartmann,et al.  Comments on Inferences of Star Formation Histories and Birth Lines , 2002, astro-ph/0211021.

[11]  A. Gould Stellar Halo Parameters from 4588 Subdwarfs , 2002, astro-ph/0208004.

[12]  S. Boldyrev,et al.  Structure Function Scaling in the Taurus and Perseus Molecular Cloud Complexes , 2002, astro-ph/0207568.

[13]  R. Paul Butler,et al.  Scientific Frontiers in Research on Extrasolar Planets , 2003 .

[14]  D. Ségransan,et al.  First radius measurements of very low mass stars with the VLTI , 2002, astro-ph/0211647.

[15]  I. Reid,et al.  Binarity in Brown Dwarfs: T Dwarf Binaries Discovered with the Hubble Space Telescope Wide Field Planetary Camera 2 , 2002, astro-ph/0211470.

[16]  L. Hartmann,et al.  The Initial Mass Function in the Taurus Star-forming Region , 2002 .

[17]  Suzanne L. Hawley,et al.  The Palomar/MSU Nearby Star Spectroscopic Survey. IV. The Luminosity Function in the Solar Neighborhood and M Dwarf Kinematics , 2002 .

[18]  T. Beers,et al.  A stellar relic from the early Milky Way , 2002, Nature.

[19]  O. Bienaym'e,et al.  Vertical distribution of Galactic disk stars - I. Kinematics and metallicity , 2002, astro-ph/0210628.

[20]  I. Bonnell,et al.  Accretion in stellar clusters and the collisional formation of massive stars , 2002 .

[21]  Caltech,et al.  Very Low Mass Stars and Brown Dwarfs in Taurus-Auriga , 2002, astro-ph/0209164.

[22]  California Institute of Technology,et al.  A substellar mass function for Alpha Persei , 2002, astro-ph/0209032.

[23]  Simon T. Hodgkin,et al.  A deep IZ survey of 1.1 deg2 of the Pleiades cluster: three candidate members with M < 0.04 Msolar , 2002 .

[24]  Yasuo Fukui,et al.  A Complete Search for Dense Cloud Cores in Taurus , 2002 .

[25]  S. Hodgkin,et al.  The Missing M Dwarfs , 2002, astro-ph/0207465.

[26]  L. Hartmann Flows, Fragmentation, and Star Formation. I. Low-Mass Stars in Taurus , 2002, astro-ph/0207216.

[27]  John E. Norris,et al.  Deciphering the Last Major Invasion of the Milky Way , 2002, astro-ph/0207106.

[28]  Irvine,et al.  Faint stars in the Ursa Minor dwarf spheroidal galaxy: implications for the low-mass stellar initial mass function at high redshift , 2002, astro-ph/0206144.

[29]  K. Fuhrmann Where are the halo stars , 2002 .

[30]  C. Benoist,et al.  ESO Imaging Survey. The stellar catalogue in the Chandra deep field south , 2002, astro-ph/0205501.

[31]  I. Bonnell,et al.  The formation mechanism of brown dwarfs , 2002, astro-ph/0206365.

[32]  S. Boldyrev,et al.  Supersonic turbulence and structure of interstellar molecular clouds. , 2002, Physical review letters.

[33]  F. Nakamura,et al.  The Stellar Initial Mass Function in Primordial Galaxies , 2002, astro-ph/0201497.

[34]  M. Livio,et al.  Structure, Evolution, and Nucleosynthesis of Primordial Stars , 2002, astro-ph/0201284.

[35]  P. Kroupa The Initial Mass Function of Stars: Evidence for Uniformity in Variable Systems , 2002, Science.

[36]  F. Allard,et al.  Evolutionary models for low-mass stars and brown dwarfs: uncertainties and limits at very young ages , 2001, astro-ph/0111385.

[37]  Stanislav Boldyrev,et al.  Scaling Relations of Supersonic Turbulence in Star-forming Molecular Clouds , 2001, astro-ph/0111345.

[38]  P. Coppi,et al.  The Formation of the First Stars. I. The Primordial Star-forming Cloud , 2001, astro-ph/0102503.

[39]  E. Sion,et al.  A Determination of the Local Density of White Dwarf Stars , 2001, astro-ph/0102120.

[40]  S. Motamen,et al.  Nonlinear diffusion equation , 2002 .

[41]  S. T. Hodgkin,et al.  A deep large‐area search for very low‐mass members of the Hyades open cluster , 2002 .

[42]  Michael L. Norman,et al.  The Formation of the First Star in the Universe , 2001, Science.

[43]  E. Guenther,et al.  UVES spectra of young brown dwarfs in Cha I: Radial and rotational velocities ? , 2001, astro-ph/0110175.

[44]  G. Chabrier The Galactic Disk Mass Budget. II. Brown Dwarf Mass Function and Density , 2001, astro-ph/0110024.

[45]  G. Piotto,et al.  Color-Magnitude Diagram and Luminosity Function of M4 near the Hydrogen-burning Limit , 2001, astro-ph/0109059.

[46]  R. Rebolo,et al.  Keck NIRC Observations of Planetary-Mass Candidate Members in the σ Orionis Open Cluster , 2001, astro-ph/0108066.

[47]  C. Clarke,et al.  Accretion in stellar clusters and the initial mass function , 2001 .

[48]  G. Chabrier The Galactic disk mass-budget : I. stellar mass-function and density , 2001, astro-ph/0107018.

[49]  S. Zucker,et al.  Derivation of the Mass Distribution of Extrasolar Planets with MAXLIMA, a Maximum Likelihood Algorithm , 2001, astro-ph/0106042.

[50]  N. S. F. Center,et al.  THE COSMIC INFRARED BACKGROUND: Measurements and Implications ⁄ , 2001, astro-ph/0105539.

[51]  Puragra Guhathakurta,et al.  The Frequency of Binary Stars in the Core of 47 Tucanae , 2001, astro-ph/0105441.

[52]  S. Udry,et al.  The distribution of exoplanet masses , 2001, astro-ph/0105301.

[53]  F. Allard,et al.  Infrared Spectroscopy of Substellar Objects in Orion , 2001, astro-ph/0105154.

[54]  Ralf Klessen,et al.  (ACCEPTED FOR PUBLICATION IN APJ) Preprint typeset using L ATEX style emulateapj v. 04/03/99 THE FORMATION OF STELLAR CLUSTERS: MASS SPECTRA FROM TURBULENT MOLECULAR CLOUD , 2001 .

[55]  M. Osorio,et al.  The Substellar Mass Function in σ Orionis , 2001, astro-ph/0104097.

[56]  A. A. Kaas,et al.  ISOCAM observations of the rho Ophiuchi cloud: Luminosity and mass functions of the pre-main sequence embedded cluster , 2001, astro-ph/0103373.

[57]  N. Hambly,et al.  Direct Detection of Galactic Halo Dark Matter , 2001, Science.

[58]  John C. Wilson,et al.  � 2001. The American Astronomical Society. All rights reserved. Printed in U.S.A. SUBSTELLAR COMPANIONS TO MAIN-SEQUENCE STARS: NO BROWN DWARF DESERT AT WIDE SEPARATIONS , 2022 .

[59]  B. Reipurth,et al.  The Formation of Brown Dwarfs as Ejected Stellar Embryos , 2001, astro-ph/0103019.

[60]  P. Myers,et al.  New OH Zeeman Measurements of Magnetic Field Strengths in Molecular Clouds , 2001, astro-ph/0102469.

[61]  Zheng Zheng,et al.  M Dwarfs from Hubble Space Telescope Star Counts. IV. , 2001, astro-ph/0102442.

[62]  C. Clarke,et al.  Accretion in stellar clusters and the IMF , 2001, astro-ph/0102121.

[63]  C. Clarke,et al.  Competitive accretion in embedded stellar clusters , 2001, astro-ph/0102074.

[64]  L. Hartmann,et al.  On Age Spreads in Star-forming Regions , 2001 .

[65]  David G. Monet,et al.  The Mass and Structure of the Pleiades Star Cluster from 2MASS , 2001, astro-ph/0101139.

[66]  M. Juvela,et al.  The Turbulent Shock Origin of Proto-Stellar Cores , 2000, astro-ph/0011122.

[67]  S. Aarseth,et al.  The formation of a bound star cluster: from the orion nebula cluster to the pleiades , 2000, astro-ph/0009470.

[68]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[69]  J. Sommer-Larsen,et al.  Formation of Disk Galaxies: Warm Dark Matter and the Angular Momentum Problem , 1999, astro-ph/9912166.

[70]  Frédérique Motte,et al.  The circumstellar environment of low-mass protostars: A millimeter continuum mapping survey ? , 2001 .

[71]  P. Padoan,et al.  The Stellar Initial Mass Function from Turbulent Fragmentation , 2000, astro-ph/0011465.

[72]  Aldo Treves,et al.  The [CLC]log[/CLC] [ITAL]N[/ITAL]–[CLC]log[/CLC] [ITAL]S[/ITAL] Distributions of Accreting and Cooling Isolated Neutron Stars , 2000 .

[73]  Coryn A. L. Bailer-Jones,et al.  Discovery of Young, Isolated Planetary Mass Objects in the σ Orionis Star Cluster , 2000 .

[74]  F. Allard,et al.  Deuterium Burning in Substellar Objects , 2000, astro-ph/0009174.

[75]  R. Crutcher,et al.  OH Zeeman Measurement of the Magnetic Field in the L1544 Core , 2000 .

[76]  K. Luhman The Initial Mass Function of Low-Mass Stars and Brown Dwarfs in Taurus , 2000, astro-ph/0007059.

[77]  G. Chabrier,et al.  Theory of Low-Mass Stars and Substellar Objects , 2000, astro-ph/0006383.

[78]  F. Allard,et al.  Evolutionary Models for Very Low-Mass Stars and Brown Dwarfs with Dusty Atmospheres , 2000, astro-ph/0005557.

[79]  J. Najita,et al.  From Stars to Superplanets: The Low-Mass Initial Mass Function in the Young Cluster IC 348 , 2000, astro-ph/0005290.

[80]  F. Paresce,et al.  On the Globular Cluster Initial Mass Function below 1 M⊙ , 2000 .

[81]  I. Reid,et al.  Hubble Space Telescope Observations of M Subdwarfs , 2000 .

[82]  G. Rieke,et al.  The Initial Mass Function of Low-Mass Stars and Brown Dwarfs in Young Clusters , 2000, astro-ph/0004386.

[83]  Caltech,et al.  New Neighbors from 2MASS: Activity and Kinematics at the Bottom of the Main Sequence , 2000, astro-ph/0004361.

[84]  David G. Monet,et al.  67 Additional L Dwarfs Discovered by the Two Micron All Sky Survey , 2000, astro-ph/0003317.

[85]  R. D. L. F. Marcos,et al.  On the dynamical evolution of the brown dwarf populationin open clusters , 2000 .

[86]  M. Fujimoto,et al.  The Origin of Extremely Metal-poor Carbon Stars and the Search for Population III , 2000, The Astrophysical journal.

[87]  A. J. Drake,et al.  The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations , 2000, astro-ph/0001272.

[88]  B. Elmegreen Star Formation in a Crossing Time , 1999, astro-ph/9911172.

[89]  L. Pulone,et al.  The Mass Function of Main-Sequence Stars in NGC 6397 from Near-Infrared and Optical High-Resolution Hubble Space Telescope Observations , 1999, astro-ph/9908251.

[90]  L. Pozzetti,et al.  Deep galaxy counts, extragalactic background light and the stellar baryon budget , 1999, astro-ph/9907315.

[91]  S. Cassisi,et al.  The Initial Mass Function of the Galactic Bulge down to ~0.15 M☉ , 1999, astro-ph/9906452.

[92]  B. Fields,et al.  Chemical Abundance Constraints on White Dwarfs as Halo Dark Matter , 1999, astro-ph/9904291.

[93]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[94]  I. Neill Reid,et al.  The HR Diagram and the Galactic Distance Scale After Hipparcos , 1999 .

[95]  David G. Monet,et al.  Dwarfs Cooler than “M”: The Definition of Spectral Type “L” Using Discoveries from the 2-Micron All-Sky Survey (2MASS) , 1999 .

[96]  K. Luhman Young Low-Mass Stars and Brown Dwarfs in IC 348 , 1999, astro-ph/9905287.

[97]  M. Skrutskie,et al.  L Dwarfs and the Substellar Mass Function , 1999, astro-ph/9905170.

[98]  I. Reid,et al.  A 2MASS Survey for Brown Dwarfs toward the Hyades , 1999, astro-ph/9905168.

[99]  N. Hambly,et al.  Brown dwarfs in the Pleiades and the initial mass function across the stellar/substellar boundary , 1999 .

[100]  Andrea M. Ghez,et al.  A Test of Pre-Main-Sequence Evolutionary Models across the Stellar/Substellar Boundary Based on Spectra of the Young Quadruple GG Tauri , 1999, astro-ph/9902318.

[101]  Donald W. McCarthy, Jr.,et al.  The Optical Mass-Luminosity Relation at the End of the Main Sequence (0.08-0.20 M☉) , 1999 .

[102]  P. Padoan,et al.  A Super-Alfvénic Model of Dark Clouds , 1999, astro-ph/9901288.

[103]  G. Chabrier,et al.  Is Galactic Dark Matter White? , 1999, astro-ph/9901145.

[104]  B. Elmegreen The Stellar Initial Mass Function from Random Sampling in Hierarchical Clouds. II. Statistical Fluctuations and a Mass Dependence for Starbirth Positions and Times , 1998, astro-ph/9811287.

[105]  James M. Stone,et al.  Kinetic and Structural Evolution of Self-gravitating, Magnetized Clouds: 2.5-Dimensional Simulations of Decaying Turbulence , 1998, astro-ph/9810321.

[106]  G. Bryan,et al.  The Formation and Fragmentation of Primordial Molecular Clouds , 1998, astro-ph/9810215.

[107]  I. Reid,et al.  M Subdwarfs: The Population II Luminosity Function , 1998, astro-ph/9810071.

[108]  R. Wielen,et al.  Kinematics of nearby Subdwarfs , 1998, astro-ph/9811442.

[109]  Leonardo Testi,et al.  Star Formation in Clusters: A Survey of Compact Millimeter-Wave Sources in the Serpens Core , 1998, astro-ph/9809323.

[110]  R. Larson Early star formation and the evolution of the stellar initial mass function in galaxies , 1998, astro-ph/9808145.

[111]  J. Kneib,et al.  Erratum: The history of star formation in dusty galaxies , 1998, astro-ph/9806062.

[112]  Andrew Gould,et al.  Systematics of RR Lyrae Statistical Parallax. III. Apparent Magnitudes and Extinctions , 1998, astro-ph/9805176.

[113]  P. Myers Cluster-forming Molecular Cloud Cores , 1998 .

[114]  L. Hartmann,et al.  Accretion and the Evolution of T Tauri Disks , 1998 .

[115]  T. Nakano Star Formation in Magnetic Clouds , 1998 .

[116]  A. Gould,et al.  Spheroid Luminosity and Mass Functions from Hubble Space Telescope Star Counts , 1997, astro-ph/9711263.

[117]  L. Pozzetti,et al.  The Star Formation History of Field Galaxies , 1997, astro-ph/9708220.

[118]  E. L. Wright,et al.  The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background. IV. Cosmological Implications , 1997, astro-ph/9806129.

[119]  Berkeley,et al.  The Luminosity Function of the Globular Cluster NGC 6397 near the Limit of Hydrogen Burning , 1997, astro-ph/9711004.

[120]  R. Wyse The Intracluster Medium: An Invariant Stellar Initial Mass Function , 1997, astro-ph/9710195.

[121]  Bruce G. Elmegreen,et al.  The Initial Stellar Mass Function from Random Sampling in a Turbulent Fractal Cloud , 1997 .

[122]  Philip A. Ianna,et al.  The solar neighborhood IV: discovery of the twentieth nearest star , 1997 .

[123]  B. Jones,et al.  The universality of the stellar initial mass function , 1997 .

[124]  I. Neill Reid,et al.  Low-Mass Binaries and the Stellar Luminosity Function , 1997 .

[125]  Alvio Renzini,et al.  ESO Imaging Survey , 1999 .

[126]  P. Cassen,et al.  Disk Accretion and the Stellar Birthline , 1997 .

[127]  B. Gibson,et al.  The Chemical Residue of a White Dwarf-dominated Galactic Halo , 1996, astro-ph/9612133.

[128]  J. Ostriker,et al.  Reionization of the Universe and the Early Production of Metals , 1996, astro-ph/9612127.

[129]  Francesco Paresce,et al.  The Lower Main Sequence of ω Centauri from Deep Hubble Space Telescope NICMOS Near-Infrared Observations , 1997 .

[130]  A. Gould,et al.  M Dwarfs from Hubble Space Telescope Star Counts. III. The Groth Strip , 1996, astro-ph/9611157.

[131]  E. Feigelson Dispersed T Tauri stars and galactic star formation , 1996 .

[132]  B. Santiago,et al.  Halo stars, starbursts, and distant globular clusters: A survey of unresolved objects in the Hubble Deep Field , 1996 .

[133]  Gilles Chabrier,et al.  Contribution of Brown Dwarfs and White Dwarfs to Recent Microlensing Observations and to the Halo Mass Budget , 1996, astro-ph/9606083.

[134]  Limin Lu,et al.  Abundances at High Redshifts: The Chemical Enrichment History of Damped Lyα Galaxies , 1996, astro-ph/9606044.

[135]  Graham Berriman,et al.  Infrared Spectra of Low-Mass Stars: Toward a Temperature Scale for Red Dwarfs , 1996 .

[136]  F. Adams,et al.  Implications of White Dwarf Galactic Halos , 1996, astro-ph/9602006.

[137]  G. Chabrier,et al.  Substellar mass function and maximum baryonic mass in the halo of the Galaxy , 1996 .

[138]  F. Adams,et al.  A Theory of the IMF for Star Formation in Molecular Clouds , 1996, astro-ph/9601139.

[139]  O. Fèvre,et al.  The Canada-France Redshift Survey: The Luminosity Density and Star Formation History of the Universe to z ~ 1 , 1996, astro-ph/9601050.

[140]  T. Guillot,et al.  A Theory of Extrasolar Giant Planets , 1995, astro-ph/9510046.

[141]  W. Langer,et al.  Study of Structure and Small-Scale Fragmentation in TMC-1 , 1995 .

[142]  T. Mouschovias,et al.  Ambipolar diffusion, interstellar dust, and the formation of cloud cores and protostars. IV. Effect of ultraviolet ionization and magnetically controlled infall rate , 1995 .

[143]  C. Norman,et al.  Nobeyama Radio Observatory report, no. 382: The mass of a star formed in a cloud core: Theory and its application to the Orion A cloud , 1995 .

[144]  K. Freese,et al.  Analysis of a Hubble Space Telescope Search for Red Dwarfs: Limits on Baryonic Matter in the Galactic Halo , 1995, astro-ph/9507097.

[145]  P. Padoan Supersonic turbulent flows and the fragmentation of a cold medium , 1995, astro-ph/9506002.

[146]  P. Kroupa ARE THE NEARBY AND PHOTOMETRIC STELLAR LUMINOSITY FUNCTIONS DIFFERENT , 1995, astro-ph/9505128.

[147]  J. Liebert,et al.  The Pop. II Lower Main Sequence: Some Properties and a Luminosity Function Determination , 1995 .

[148]  C. Tinney The Bottom of the Main Sequence — And Beyond , 1995 .

[149]  J. Silk A Theory for the Initial Mass Function , 1995 .

[150]  R. Kennicutt,et al.  Past and Future Star Formation in Disk Galaxies , 1994 .

[151]  K. Sahu Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events , 1994, Nature.

[152]  A. Gould,et al.  M Dwarfs, Microlensing, and the Mass Budget of the Galaxy , 1994, astro-ph/9406019.

[153]  Todd J. Henry,et al.  The mass-luminosity relation for stars of mass 1.0 to 0.08 solar mass , 1993 .

[154]  G. Gilmore,et al.  The distribution of low-mass stars in the Galactic disc , 1993 .

[155]  I. Reid,et al.  The faintest stars: infrared photometry, spectra, and bolometric magnitudes , 1993 .

[156]  Sandra M. Faber,et al.  MG and Fe absorption features in elliptical galaxies , 1992 .

[157]  Richard B. Larson,et al.  Towards understanding the stellar initial mass function , 1992 .

[158]  David G. Monet,et al.  U.S. Naval Observatory CCD parallaxes of faint stars. I - Program description and first results , 1992 .

[159]  Christopher A. Tout,et al.  The effects of unresolved binary stars on the determination of the stellar mass function , 1991 .

[160]  S. Casertano,et al.  Kinematic modeling of the galaxy. II. Two samples of high proper motion stars , 1990 .

[161]  J. Sommer-Larsen,et al.  ARMCHAIR CARTOGRAPHY - A MAP OF THE GALACTIC HALO BASED ON OBSERVATIONS OF LOCAL, METAL-POOR STARS , 1990 .

[162]  L. Hartmann,et al.  On the apparent positions of T Tauri stars in the H-R diagram , 1990 .

[163]  Todd J. Henry,et al.  A systematic search for brown dwarfs orbiting nearby stars , 1988 .

[164]  F. Adams,et al.  Star Formation in Molecular Clouds: Observation and Theory , 1987 .

[165]  S. Casertano,et al.  Kinematics and density of the Galactic spheroid , 1986 .

[166]  J. Scalo The stellar initial mass function , 1986 .

[167]  J. Liebert,et al.  LHS 292 and the luminosity function of the nearby M dwarfs. , 1986 .

[168]  S. M. Fall,et al.  A theory for the origin of globular clusters , 1985 .

[169]  R. Larson Cloud fragmentation and stellar masses , 1985 .

[170]  H. Zinnecker Star formation from hierarchical cloud fragmentation - A statistical theory of the log-normal Initial Mass Function , 1984 .

[171]  Gerard Gilmore,et al.  New light on faint stars – III. Galactic structure towards the South Pole and the Galactic thick disc , 1983 .

[172]  O. Eggen Catalogs of proper motion stars. II - Stars brighter than visual magnitude 15 and south of declination +30 deg with annual proper motion between 0.7 and 1.0 arcsec , 1980 .

[173]  R. Larson Turbulence and star formation in molecular clouds , 1980 .

[174]  Glenn E. Miller,et al.  The Initial mass function and stellar birthrate in the solar neighborhood , 1979 .

[175]  O. Eggen Catalogs of proper-motion stars. I - Stars brighter than visual magnitude 15 and with annual proper motion of 1 arcsec or more , 1979 .

[176]  R. Larson Calculations of three-dimensional collapse and fragmentation , 1978 .

[177]  J. Silk On the fragmentation of cosmic gas clouds. II - Opacity-limited star formation , 1977 .

[178]  R. Larson A Simple Probabilistic Theory of Fragmentation , 1973 .

[179]  Richard B. Larson,et al.  Numerical Calculations of the Dynamics of a Collapsing Proto-Star , 1969 .

[180]  T. Nakano Fragmentation of a Cloud and the Mass Function of Stars in Galactic Clusters , 1966 .

[181]  M. Schmidt The Rate of Star Formation , 1959 .

[182]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[183]  F. Hoyle On the Fragmentation of Gas Clouds Into Galaxies and Stars. , 1953 .

[184]  H. Hollingworth Birth and Infancy. , 1943 .