cDNA Sequences for Transcription Factors and Signaling Proteins of the Hemichordate Saccoglossus kowalevskii: Efficacy of the Expressed Sequence Tag (EST) Approach for Evolutionary and Developmental Studies of a New Organism

We describe a collection of expressed sequence tags (ESTs) for Saccoglossus kowalevskii, a direct-developing hemichordate valuable for evolutionary comparisons with chordates. The 202,175 ESTs represent 163,633 arrayed clones carrying cDNAs prepared from embryonic libraries, and they assemble into 13,677 continuous sequences (contigs), leaving 10,896 singletons (excluding mitochondrial sequences). Of the contigs, 53% had significant matches when BLAST was used to query the NCBI databases (≤10−10), as did 51% of the singletons. Contigs most frequently matched sequences from amphioxus (29%), chordates (67%), and deuterostomes (87%). From the clone array, we isolated 400 full-length sequences for transcription factors and signaling proteins of use for evolutionary and developmental studies. The set includes sequences for fox, pax, tbx, hox, and other homeobox-containing factors, and for ligands and receptors of the TGFβ, Wnt, Hh, Delta/Notch, and RTK pathways. At least 80% of key sequences have been obtained, when judged against gene lists of model organisms. The median length of these cDNAs is 2.3 kb, including 1.05 kb of 3′ untranslated region (UTR). Only 30% are entirely matched by single contigs assembled from ESTs. We conclude that an EST collection based on 150,000 clones is a rich source of sequences for molecular developmental work, and that the EST approach is an efficient way to initiate comparative studies of a new organism.

[1]  Broome,et al.  Literature cited , 1924, A Guide to the Carnivores of Central America.

[2]  Nicholas H. Putnam,et al.  The amphioxus genome and the evolution of the chordate karyotype , 2008, Nature.

[3]  Y. Kohara,et al.  Analysis of large scale expression sequenced tags (ESTs) from the anural ascidian, Molgula tectiformis. , 2007, Developmental biology.

[4]  Nicholas H. Putnam,et al.  Sea Anemone Genome Reveals Ancestral Eumetazoan Gene Repertoire and Genomic Organization , 2007, Science.

[5]  B. Swalla,et al.  Development and evolution of chordate cartilage. , 2007, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[6]  Matthew M. Hill,et al.  Extreme genomic variation in a natural population , 2007, Proceedings of the National Academy of Sciences.

[7]  N. Satoh,et al.  Further EST analysis of endocrine genes that are preferentially expressed in the neural complex of Ciona intestinalis: receptor and enzyme genes associated with endocrine system in the neural complex. , 2007, General and comparative endocrinology.

[8]  E. Davidson,et al.  Identification and characterization of homeobox transcription factor genes in Strongylocentrotus purpuratus, and their expression in embryonic development. , 2006, Developmental biology.

[9]  E. Davidson,et al.  Gene families encoding transcription factors expressed in early development of Strongylocentrotus purpuratus. , 2006, Developmental biology.

[10]  D. McClay,et al.  A genome-wide survey of the evolutionarily conserved Wnt pathways in the sea urchin Strongylocentrotus purpuratus. , 2006, Developmental biology.

[11]  R. F. Gray,et al.  The C2H2 zinc finger genes of Strongylocentrotus purpuratus and their expression in embryonic development. , 2006, Developmental biology.

[12]  D. McClay,et al.  Genomics and expression profiles of the Hedgehog and Notch signaling pathways in sea urchin development. , 2006, Developmental biology.

[13]  E. Davidson,et al.  Sea urchin Forkhead gene family: phylogeny and embryonic expression. , 2006, Developmental biology.

[14]  M. Arnone,et al.  Genetic organization and embryonic expression of the ParaHox genes in the sea urchin S. purpuratus: insights into the relationship between clustering and colinearity. , 2006, Developmental biology.

[15]  D. McClay,et al.  RTK and TGF-β signaling pathways genes in the sea urchin genome , 2006 .

[16]  Eric H Davidson,et al.  The Transcriptome of the Sea Urchin Embryo , 2006, Science.

[17]  Andrew R. Jackson,et al.  The Genome of the Sea Urchin Strongylocentrotus purpuratus , 2006, Science.

[18]  Sarah J. Bourlat,et al.  Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida , 2006, Nature.

[19]  C. Lowe,et al.  Hox gene expression in the hemichordate Saccoglossus kowalevskii and the evolution of deuterostome nervous systems. , 2006, Integrative and comparative biology.

[20]  William McGinnis,et al.  Genomic Evolution of Hox Gene Clusters , 2006, Science.

[21]  E. Lander,et al.  Dorsoventral Patterning in Hemichordates: Insights into Early Chordate Evolution , 2006, PLoS biology.

[22]  B. Swalla Building divergent body plans with similar genetic pathways , 2006, Heredity.

[23]  E. D. Robertis,et al.  Spemann's organizer and self-regulation in amphibian embryos , 2006, Nature Reviews Molecular Cell Biology.

[24]  B. Swalla,et al.  Evolution and development of the chordates: collagen and pharyngeal cartilage. , 2006, Molecular biology and evolution.

[25]  Louise Duloquin,et al.  RTK and TGF-beta signaling pathways genes in the sea urchin genome. , 2006, Developmental biology.

[26]  Haiming Wang,et al.  MAGIC-SPP: a database-driven DNA sequence processing package with associated management tools , 2006, BMC Bioinformatics.

[27]  J. Gerhart,et al.  Hemichordates and the origin of chordates. , 2005, Current opinion in genetics & development.

[28]  C. Cameron A phylogeny of the hemichordates based on morphological characters , 2005 .

[29]  E. Ruppert Key characters uniting hemichordates and chordates: homologies or homoplasies? , 2005 .

[30]  Ji-Ping Z. Wang,et al.  EST clustering error evaluation and correction , 2004, Bioinform..

[31]  R. Nusse,et al.  The Wnt signaling pathway in development and disease. , 2004, Annual review of cell and developmental biology.

[32]  Nancy Papalopulu,et al.  Defining a large set of full-length clones from a Xenopus tropicalis EST project. , 2004, Developmental biology.

[33]  G. Wray,et al.  From bilateral symmetry to pentaradiality: the phylogeny of hemichordates and echinoderms , 2004 .

[34]  Mark A McPeek,et al.  Estimating metazoan divergence times with a molecular clock. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Stephen W. Wilson,et al.  Early steps in the development of the forebrain. , 2004, Developmental cell.

[36]  J. Gerhart,et al.  Hemichordate embryos: procurement, culture, and basic methods. , 2004, Methods in cell biology.

[37]  E. Lander,et al.  Anteroposterior Patterning in Hemichordates and the Origins of the Chordate Nervous System , 2003, Cell.

[38]  William McGinnis,et al.  Evolution of transcription factor function. , 2003, Current opinion in genetics & development.

[39]  John Quackenbush,et al.  TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets , 2003, Bioinform..

[40]  Ralf J. Sommer,et al.  The evolution of signalling pathways in animal development , 2003, Nature Reviews Genetics.

[41]  Paramvir S. Dehal,et al.  Whole-Genome Shotgun Assembly and Analysis of the Genome of Fugu rubripes , 2002, Science.

[42]  Haixu Tang,et al.  Splicing graphs and EST assembly problem , 2002, ISMB.

[43]  Scott Barolo,et al.  Three habits of highly effective signaling pathways: principles of transcriptional control by developmental cell signaling. , 2002, Genes & development.

[44]  P. Holland,et al.  Bayesian Phylogenetic Analysis Supports Monophyly of Ambulacraria and of Cyclostomes , 2002, Zoological science.

[45]  J. Mullikin,et al.  SSAHA: a fast search method for large DNA databases. , 2001, Genome research.

[46]  G. Mahairas,et al.  A large-scale analysis of mRNAs expressed by primary mesenchyme cells of the sea urchin embryo. , 2001, Development.

[47]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[48]  B L Maidak,et al.  The RDP-II (Ribosomal Database Project) , 2001, Nucleic Acids Res..

[49]  J. Massagué,et al.  How cells read TGF-β signals , 2000, Nature Reviews Molecular Cell Biology.

[50]  B. Swalla,et al.  Evolution of the chordate body plan: new insights from phylogenetic analyses of deuterostome phyla. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[51]  W. McGinnis,et al.  Developmental patterning genes and their conserved functions: from model organisms to humans. , 2000, Molecular genetics and metabolism.

[52]  M. Scott Development The Natural History of Genes , 2000, Cell.

[53]  B. Degnan,et al.  Hemichordates and deuterostome evolution: robust molecular phylogenetic support for a hemichordate + echinoderm clade , 1999, Evolution & development.

[54]  R D Klausner,et al.  The mammalian gene collection. , 1999, Science.

[55]  X. Huang,et al.  CAP3: A DNA sequence assembly program. , 1999, Genome research.

[56]  N. Satoh,et al.  Developmental expression of Pax1/9 genes in urochordate and hemichordate gills: insight into function and evolution of the pharyngeal epithelium. , 1999, Development.

[57]  E. Davidson,et al.  A comparative molecular approach to mesodermal patterning in basal deuterostomes: the expression pattern of Brachyury in the enteropneust hemichordate Ptychodera flava. , 1999, Development.

[58]  S. Pääbo,et al.  The mitochondrial genome of the hemichordate Balanoglossus carnosus and the evolution of deuterostome mitochondria. , 1998, Genetics.

[59]  P. Green,et al.  Base-calling of automated sequencer traces using phred. I. Accuracy assessment. , 1998, Genome research.

[60]  P Green,et al.  Base-calling of automated sequencer traces using phred. II. Error probabilities. , 1998, Genome research.

[61]  Y. Sasai,et al.  A common plan for dorsoventral patterning in Bilateria , 1996, Nature.

[62]  M. Scott Intimations of a creature , 1994, Cell.

[63]  E. Ruppert,et al.  Structure, Ultrastructure, and Function of the Preoral Heart‐Kidney in Saccoglossus kowalevskii (Hemichordata, Enteropneusta) Including New Data on the Stomochord , 1990 .

[64]  J. Saint-Jeannet,et al.  Neural induction. , 1986, Archives d'anatomie microscopique et de morphologie experimentale.

[65]  A. Colwin Induction of spawning in Saccoglossus kowalevskii (Enteropneusta) at Woods Hole , 1962 .

[66]  L. Colwin,et al.  The normal embryology of saccoglossus kowalevskii (enteropneusta) , 1953 .

[67]  C. Burdon-jones Development and Biology of the Larva of Saccoglossus Horsti (Enteropneusta) , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[68]  L. Colwin,et al.  The developmental capacities of separated early blastomeres of an enteropneust, saccoglossus kowalevskii , 1950 .

[69]  E. Goodrich Memoirs: "Proboscis pores" in Craniate Vertebrates, a Suggestion Concerning the Premandibular Somites and Hypophysis , 1917 .

[70]  W. Bateson Memoirs: Continued Account of the Later Stages in the Development of Balanoglossus Kowalevskii, and of the Morphology of the Enteropneusta , 1886 .

[71]  W. Bateson Memoirs: The Later Stages in the Development of Bala-noglossus Kowalevskii, with a Suggestion as to the Affinities of the Enteropneusta , 1885 .

[72]  W. Bateson Memoirs: The Early Stages in the Development of Balanoglossus (sp. incert.) , 1884 .

[73]  FOR PUBLICATION , 2022 .