4-8 Subdivision

[1]  Hartmut Prautzsch,et al.  Box Splines , 2002, Handbook of Computer Aided Geometric Design.

[2]  David G. Kirkpatrick,et al.  Right-Triangulated Irregular Networks , 2001, Algorithmica.

[3]  Leif Kobbelt,et al.  √3-subdivision , 2000, SIGGRAPH.

[4]  Henning Biermann,et al.  Piecewise smooth subdivision surfaces with normal control , 2000, SIGGRAPH.

[5]  Denis Zorin,et al.  A Method for Analysis of C1 -Continuity of Subdivision Surfaces , 2000, SIAM J. Numer. Anal..

[6]  Luiz Velho,et al.  Using Semi-Regular 4–8 Meshes for Subdivision Surfaces , 2000, J. Graphics, GPU, & Game Tools.

[7]  A. Derose,et al.  Subdivision for modeling and animation , 2000 .

[8]  Ayman Habib,et al.  Edge and vertex insertion for a class of C1 subdivision surfaces , 1999, Comput. Aided Geom. Des..

[9]  Jos Stam,et al.  Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.

[10]  Malcolm A. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1998 .

[11]  Delma J. Hebert Cyclic Interlaced Quadtree Algorithms for Quincunx Multiresolution , 1998, J. Algorithms.

[12]  N. SIAMJ. A METHOD FOR ANALYSIS OF C-CONTINUITY OF SUBDIVISION SURFACES∗ , 1998 .

[13]  Jörg Peters,et al.  The simplest subdivision scheme for smoothing polyhedra , 1997, TOGS.

[14]  David E. Sigeti,et al.  ROAMing terrain: Real-time Optimally Adapting Meshes , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[15]  Peter Schröder,et al.  Interactive multiresolution mesh editing , 1997, SIGGRAPH.

[16]  S. L. Lee,et al.  Stability and orthonormality of multivariate refinable functions , 1997 .

[17]  Right Triangular Irregular Networks , 1997 .

[18]  William Ribarsky,et al.  Real-time, continuous level of detail rendering of height fields , 1996, SIGGRAPH.

[19]  Leif Kobbelt,et al.  Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary Topology , 1996, Comput. Graph. Forum.

[20]  James K. Hahn,et al.  BMRT: A Global Illumination Implementation of the RenderMan Standard , 1996, J. Graphics, GPU, & Game Tools.

[21]  Ulrich Reif,et al.  A unified approach to subdivision algorithms near extraordinary vertices , 1995, Comput. Aided Geom. Des..

[22]  C. D. Boor,et al.  Box splines , 1993 .

[23]  C. Micchelli,et al.  Stationary Subdivision , 1991 .

[24]  G. C. Shephard,et al.  Tilings and patterns. W. H. Freeman and Co. Ltd., Oxford 1987. IX + 700 p., 1395 figs., price £ 54.95, ISBN 0–7167–1193–1 , 1991 .

[25]  G. C. Shephard,et al.  Tilings and Patterns , 1990 .

[26]  Alan H. Barr,et al.  Accurate triangulations of deformed, intersecting surfaces , 1987, SIGGRAPH.

[27]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[28]  M. Rivara Mesh Refinement Processes Based on the Generalized Bisection of Simplices , 1984 .

[29]  D. H. Mellor,et al.  Real time , 1981 .

[30]  Richard F. Riesenfeld,et al.  A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[32]  M. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1978 .

[33]  P. Zwart Multivariate Splines with Nondegenerate Partitions , 1973 .

[34]  R. Bellman,et al.  Theory and application of the z-transform method , 1965 .