4-8 Subdivision
暂无分享,去创建一个
[1] Hartmut Prautzsch,et al. Box Splines , 2002, Handbook of Computer Aided Geometric Design.
[2] David G. Kirkpatrick,et al. Right-Triangulated Irregular Networks , 2001, Algorithmica.
[3] Leif Kobbelt,et al. √3-subdivision , 2000, SIGGRAPH.
[4] Henning Biermann,et al. Piecewise smooth subdivision surfaces with normal control , 2000, SIGGRAPH.
[5] Denis Zorin,et al. A Method for Analysis of C1 -Continuity of Subdivision Surfaces , 2000, SIAM J. Numer. Anal..
[6] Luiz Velho,et al. Using Semi-Regular 4–8 Meshes for Subdivision Surfaces , 2000, J. Graphics, GPU, & Game Tools.
[7] A. Derose,et al. Subdivision for modeling and animation , 2000 .
[8] Ayman Habib,et al. Edge and vertex insertion for a class of C1 subdivision surfaces , 1999, Comput. Aided Geom. Des..
[9] Jos Stam,et al. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.
[10] Malcolm A. Sabin,et al. Behaviour of recursive division surfaces near extraordinary points , 1998 .
[11] Delma J. Hebert. Cyclic Interlaced Quadtree Algorithms for Quincunx Multiresolution , 1998, J. Algorithms.
[12] N. SIAMJ.. A METHOD FOR ANALYSIS OF C-CONTINUITY OF SUBDIVISION SURFACES∗ , 1998 .
[13] Jörg Peters,et al. The simplest subdivision scheme for smoothing polyhedra , 1997, TOGS.
[14] David E. Sigeti,et al. ROAMing terrain: Real-time Optimally Adapting Meshes , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).
[15] Peter Schröder,et al. Interactive multiresolution mesh editing , 1997, SIGGRAPH.
[16] S. L. Lee,et al. Stability and orthonormality of multivariate refinable functions , 1997 .
[17] Right Triangular Irregular Networks , 1997 .
[18] William Ribarsky,et al. Real-time, continuous level of detail rendering of height fields , 1996, SIGGRAPH.
[19] Leif Kobbelt,et al. Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary Topology , 1996, Comput. Graph. Forum.
[20] James K. Hahn,et al. BMRT: A Global Illumination Implementation of the RenderMan Standard , 1996, J. Graphics, GPU, & Game Tools.
[21] Ulrich Reif,et al. A unified approach to subdivision algorithms near extraordinary vertices , 1995, Comput. Aided Geom. Des..
[22] C. D. Boor,et al. Box splines , 1993 .
[23] C. Micchelli,et al. Stationary Subdivision , 1991 .
[24] G. C. Shephard,et al. Tilings and patterns. W. H. Freeman and Co. Ltd., Oxford 1987. IX + 700 p., 1395 figs., price £ 54.95, ISBN 0–7167–1193–1 , 1991 .
[25] G. C. Shephard,et al. Tilings and Patterns , 1990 .
[26] Alan H. Barr,et al. Accurate triangulations of deformed, intersecting surfaces , 1987, SIGGRAPH.
[27] Charles T. Loop,et al. Smooth Subdivision Surfaces Based on Triangles , 1987 .
[28] M. Rivara. Mesh Refinement Processes Based on the Generalized Bisection of Simplices , 1984 .
[29] D. H. Mellor,et al. Real time , 1981 .
[30] Richard F. Riesenfeld,et al. A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[31] E. Catmull,et al. Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .
[32] M. Sabin,et al. Behaviour of recursive division surfaces near extraordinary points , 1978 .
[33] P. Zwart. Multivariate Splines with Nondegenerate Partitions , 1973 .
[34] R. Bellman,et al. Theory and application of the z-transform method , 1965 .