Ultrafast optical excitation of a persistent surface-state population in the topological insulator Bi2Se3.

Using femtosecond time- and angle-resolved photoemission spectroscopy, we investigated the nonequilibrium dynamics of the topological insulator Bi2Se3. We studied p-type Bi2Se3, in which the metallic Dirac surface state and bulk conduction bands are unoccupied. Optical excitation leads to a metastable population at the bulk conduction band edge, which feeds a nonequilibrium population of the surface state persisting for >10 ps. This unusually long-lived population of a metallic Dirac surface state with spin texture may present a channel in which to drive transient spin-polarized currents.

[1]  A. Markelz,et al.  Terahertz response and colossal Kerr rotation from the surface states of the topological insulator Bi2Se3. , 2011, Physical review letters.

[2]  N. Gedik,et al.  Selective probing of photoinduced charge and spin dynamics in the bulk and surface of a topological insulator. , 2011, Physical review letters.

[3]  Hui Zhao,et al.  Spatially resolved femtosecond pump-probe study of topological insulator Bi 2 Se 3 , 2011, 1104.0349.

[4]  Michael Bauer,et al.  Collapse of long-range charge order tracked by time-resolved photoemission at high momenta , 2011, Nature.

[5]  P. Hosur,et al.  Circular photogalvanic effect on topological insulator surfaces: Berry-curvature-dependent response , 2011 .

[6]  James Analytis,et al.  Two-dimensional surface state in the quantum limit of a topological insulator , 2010 .

[7]  P. Jarillo-Herrero,et al.  Surface state transport and ambipolar electric field effect in Bi₂Se₃ nanodevices. , 2010, Nano letters.

[8]  Y. P. Chen,et al.  Ultrafast carrier and phonon dynamics in Bi2Se3 crystals , 2010, 1010.4265.

[9]  Z. K. Liu,et al.  Massive Dirac Fermion on the Surface of a Magnetically Doped Topological Insulator , 2010, Science.

[10]  Andrei B. Sushkov,et al.  Strong surface scattering in ultrahigh mobility Bi2Se3 topological insulator crystals , 2010, 1003.2382.

[11]  Xiao-Liang Qi,et al.  Aharonov-Bohm interference in topological insulator nanoribbons. , 2009, Nature materials.

[12]  F. Meier,et al.  A tunable topological insulator in the spin helical Dirac transport regime , 2009, Nature.

[13]  P. Roushan,et al.  Topological surface states protected from backscattering by chiral spin texture , 2009, Nature.

[14]  Xi Dai,et al.  Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface , 2009 .

[15]  Shin–ichiro Tanaka,et al.  Dynamics of bulk-to-surface electron transitions on Si ( 001 ) − ( 2 × 1 ) studied by time-resolved two-photon photoemission spectroscopy , 2009 .

[16]  Jiadong Zang,et al.  Inducing a Magnetic Monopole with Topological Surface States , 2009, Science.

[17]  C. Kane,et al.  Observation of Unconventional Quantum Spin Textures in Topological Insulators , 2009, Science.

[18]  Z. Shen,et al.  Transient Electronic Structure and Melting of a Charge Density Wave in TbTe3 , 2008, Science.

[19]  Xiao-Liang Qi,et al.  Topological field theory of time-reversal invariant insulators , 2008, 0802.3537.

[20]  Uwe Bovensiepen,et al.  Coherent and incoherent excitations of the Gd(0001) surface on ultrafast timescales , 2007 .

[21]  Liang Fu,et al.  Topological insulators in three dimensions. , 2006, Physical review letters.

[22]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[23]  Dieter K. Schroder,et al.  Semiconductor Material and Device Characterization: Schroder/Semiconductor Material and Device Characterization, Third Edition , 2005 .

[24]  Giovanni Vignale,et al.  Quantum Theory of the Electron Liquid , 2005 .

[25]  M. Rohlfing,et al.  Dynamics of exciton formation at the Si(100) c(4 x 2) surface. , 2004, Physical review letters.

[26]  Hrvoje Petek,et al.  Femtosecond Time-Resolved Two-Photon Photoemission Studies of Electron Dynamics in Metals , 1998 .

[27]  Wolf,et al.  Ultrafast dynamics of electrons in image-potential states on clean and Xe-covered Cu(111). , 1996, Physical review. B, Condensed matter.

[28]  Richard Haight,et al.  Electron dynamics at surfaces , 1995 .

[29]  P. Halevi,et al.  TWO-PHOTON PHOTOEMISSION SPECTROSCOPY OF IMAGE STATES , 1995 .

[30]  Rowe,et al.  Picosecond photoelectron spectroscopy of excited states at Si(111) sqrt 3 x sqrt 3 R30 degrees-B, Si(111)7 x 7, Si(100)2 x 1, and laser-annealed Si(111)1 x 1 surfaces. , 1993, Physical Review B (Condensed Matter).

[31]  D. Schroder Semiconductor Material and Device Characterization , 1990 .

[32]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[33]  J. Pendry,et al.  The existence and detection of Rydberg states at surfaces , 1978 .

[34]  W. Richter,et al.  A Raman and far‐infrared investigation of phonons in the rhombohedral V2–VI3 compounds Bi2Te3, Bi2Se3, Sb2Te3 and Bi2(Te1−xSex)3 (0 < x < 1), (Bi1−ySby)2Te3 (0 < y < 1) , 1977 .

[35]  R. A. Ferrell,et al.  Electron Self-Energy Approach to Correlation in a Degenerate Electron Gas , 1958 .