A composite collocation method for the nonlinear mixed Volterra–Fredholm–Hammerstein integral equations

Abstract This paper presents a computational technique for the solution of the nonlinear mixed Volterra–Fredholm–Hammerstein integral equations. The method is based on the composite collocation method. The properties of hybrid of block-pulse functions and Lagrange polynomials are discussed and utilized to define the composite interpolation operator. The estimates for the errors are given. The composite interpolation operator together with the Gaussian integration formula are then used to transform the nonlinear mixed Volterra–Fredholm–Hammerstein integral equations into a system of nonlinear equations. The efficiency and accuracy of the proposed method is illustrated by four numerical examples.

[1]  Fuyi Li,et al.  Existence of solutions to nonlinear Hammerstein integral equations and applications , 2006 .

[2]  Ian H. Sloan,et al.  A new collocation-type method for Hammerstein integral equations , 1987 .

[3]  Jan S. Hesthaven,et al.  Spectral Methods for Time-Dependent Problems: Contents , 2007 .

[4]  Han Guo-qiang Asymptotic error expansion of a collocation-type method for Volterra-Hammerstein integral equations , 1993 .

[5]  G. F. Roach,et al.  Adomian's method for Hammerstein integral equations arising from chemical reactor theory , 2001, Appl. Math. Comput..

[6]  Yadollah Ordokhani,et al.  Solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via rationalized Haar functions , 2006, Appl. Math. Comput..

[7]  Hermann Brunner,et al.  Implicitly linear collocation methods for nonlinear Volterra equations , 1992 .

[8]  Mohsen Razzaghi,et al.  Legendre wavelets method for the nonlinear Volterra-Fredholm integral equations , 2005, Math. Comput. Simul..

[9]  R. Bellman,et al.  Quasilinearization and nonlinear boundary-value problems , 1966 .

[10]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[11]  Alfio Quarteroni,et al.  Spectral and Pseudo-Spectral Approximations of the Navier–Stokes Equations , 1982 .

[12]  Salih Yalçinbas Taylor polynomial solutions of nonlinear Volterra-Fredholm integral equations , 2002, Appl. Math. Comput..

[13]  Necdet Bildik,et al.  MODIFIED DECOMPOSITION METHOD FOR NONLINEAR VOLTERRA-FREDHOLM INTEGRAL EQUATIONS , 2007 .

[14]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .