53BP1 facilitates long-range DNA end-joining during V(D)J recombination

[1]  Tobias A. Knoch,et al.  The 3D Structure of the Immunoglobulin Heavy-Chain Locus: Implications for Long-Range Genomic Interactions , 2008, Cell.

[2]  M. Nussenzweig,et al.  ATM Prevents the Persistence and Propagation of Chromosome Breaks in Lymphocytes , 2007, Cell.

[3]  B. Sleckman,et al.  Developmental Stage-Specific Regulation of TCR-α-Chain Gene Assembly by Intrinsic Features of the TEA Promoter1 , 2007, The Journal of Immunology.

[4]  T. Pandita,et al.  Defects in coding joint formation in vivo in developing ATM-deficient B and T lymphocytes , 2007, The Journal of experimental medicine.

[5]  S. Jackson,et al.  Distinct domains in Nbs1 regulate irradiation-induced checkpoints and apoptosis , 2007, The Journal of experimental medicine.

[6]  Angelo J. Canty,et al.  ATM deficiency disrupts Tcra locus integrity and the maturation of CD4+CD8+ thymocytes. , 2007, Blood.

[7]  M. Nussenzweig,et al.  Enhanced intra‐switch region recombination during immunoglobulin class switch recombination in 53BP1–/– B cells , 2007, European journal of immunology.

[8]  Georges Mer,et al.  Structural Basis for the Methylation State-Specific Recognition of Histone H4-K20 by 53BP1 and Crb2 in DNA Repair , 2006, Cell.

[9]  T. Pandita,et al.  ATM stabilizes DNA double-strand-break complexes during V(D)J recombination , 2006, Nature.

[10]  S. Jackson,et al.  gammaH2AX and MDC1: anchoring the DNA-damage-response machinery to broken chromosomes. , 2006, DNA repair.

[11]  Michel C. Nussenzweig,et al.  Role of genomic instability and p53 in AID-induced c-myc–Igh translocations , 2006, Nature.

[12]  Michael M. Murphy,et al.  H2AX prevents DNA breaks from progressing to chromosome breaks and translocations. , 2006, Molecular cell.

[13]  F. Alt,et al.  MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals. , 2006, Molecular cell.

[14]  M. Schlissel,et al.  Single-strand recombination signal sequence nicks in vivo: evidence for a capture model of synapsis , 2005, Nature Immunology.

[15]  S. Elledge,et al.  53BP1 Oligomerization is Independent of its Methylation by PRMT1 , 2005, Cell cycle.

[16]  S. Bekker-Jensen,et al.  Dynamic assembly and sustained retention of 53BP1 at the sites of DNA damage are controlled by Mdc1/NFBD1 , 2005, The Journal of cell biology.

[17]  M. Sheng,et al.  The 8-kDa Dynein Light Chain Binds to p53-binding Protein 1 and Mediates DNA Damage-induced p53 Nuclear Accumulation* , 2005, Journal of Biological Chemistry.

[18]  Tom J. Petty,et al.  Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks , 2004, Nature.

[19]  M. Nussenzweig,et al.  ATM Is Required for Efficient Recombination between Immunoglobulin Switch Regions , 2004, The Journal of experimental medicine.

[20]  Michel Nussenzweig,et al.  H2AX: the histone guardian of the genome. , 2004, DNA repair.

[21]  M. Nussenzweig,et al.  53BP1 is required for class switch recombination , 2004, The Journal of cell biology.

[22]  F. Alt,et al.  53BP1 links DNA damage-response pathways to immunoglobulin heavy chain class-switch recombination , 2004, Nature Immunology.

[23]  M. Nussenzweig,et al.  H2AX Is Required for Recombination Between Immunoglobulin Switch Regions but Not for Intra-Switch Region Recombination or Somatic Hypermutation , 2003, The Journal of experimental medicine.

[24]  Junjie Chen,et al.  p53 Binding Protein 53BP1 Is Required for DNA Damage Responses and Tumor Suppression in Mice , 2003, Molecular and Cellular Biology.

[25]  M. Gellert,et al.  Ordered assembly of the V(D)J synaptic complex ensures accurate recombination , 2002, The EMBO journal.

[26]  Michel C. Nussenzweig,et al.  Genomic Instability in Mice Lacking Histone H2AX , 2002, Science.

[27]  Thomas Ried,et al.  AID is required to initiate Nbs1/γ-H2AX focus formation and mutations at sites of class switching , 2001, Nature.

[28]  Thomas Ried,et al.  Response to RAG-mediated V(D)J cleavage by NBS1 and γ-H2AX , 2000 .

[29]  F. Alt,et al.  Growth retardation and leaky SCID phenotype of Ku70-deficient mice. , 1997, Immunity.

[30]  F. Alt,et al.  Increased frequency of aberrant V(D)J recombination products in core RAG-expressing mice. , 2004, Nucleic acids research.

[31]  T. Ried,et al.  Response to RAG-mediated VDJ cleavage by NBS1 and gamma-H2AX. , 2000, Science.