Altered Effective Connectivity within the Language Network in Primary Progressive Aphasia

Primary progressive aphasia (PPA) is a neurodegenerative dementia syndrome principally characterized by the gradual dissolution of language functions, especially in the early stages of disorder. In a previous functional neuroimaging study, PPA patients were found to activate core language areas similarly to control subjects when performing semantic and phonological processing tasks (Sonty et al., 2003). In the present study, functional magnetic resonance imaging (fMRI) and dynamic causal modeling (DCM) were used to study multiregional effective connectivity in early-stage PPA (n = 8) and control (n = 8) subjects performing semantic word matching and visual letter matching tasks. fMRI analysis showed semantic task-specific activations in the left inferior frontal (Broca's area) and posterior superior temporal (Wernicke's area) regions, in addition to other language regions, in both groups. Using a model language network consisting of six left hemisphere regions, the DCM analysis demonstrated reduced language-specific effective connectivity between Wernicke's and Broca's areas in the PPA patient group. Furthermore, this decrement in connectivity was predictive of semantic task accuracy. These results demonstrate for the first time that dysfunctional network interactions (effective connectivity), rather than hypoactivity within individual brain regions, may contribute to the emergence of language deficits seen in PPA.

[1]  R J Wise,et al.  Separate neural subsystems within 'Wernicke's area'. , 2001, Brain : a journal of neurology.

[2]  D. Pandya,et al.  Intrinsic connections and architectonics of the superior temporal sulcus in the rhesus monkey , 1989, The Journal of comparative neurology.

[3]  Derek K. Jones,et al.  Perisylvian language networks of the human brain , 2005, Annals of neurology.

[4]  D. Gitelman,et al.  Clinical fMRI: Is patient motion really an issue? , 1998, NeuroImage.

[5]  John Q. Trojanowski,et al.  Prefrontal granular cortex of the rhesus monkey. I. Intrahemispheric cortical afferents , 1977, Brain Research.

[6]  J. Hodges,et al.  Neuroradiological findings in primary progressive aphasia: CT, MRI and cerebral perfusion SPECT , 1996, Neuroradiology.

[7]  Meritxell Bach Cuadra,et al.  Comparison and validation of tissue modelization and statistical classification methods in T1-weighted MR brain images , 2005, IEEE Transactions on Medical Imaging.

[8]  J. Morris,et al.  The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part I. Clinical and neuropsychological assesment of Alzheimer's disease , 1989, Neurology.

[9]  Functional heterogeneity of left inferior frontal cortex: Explicit behavioural and PET evidence , 1997 .

[10]  M. Mesulam,et al.  Primary progressive aphasia: PPA and the language network , 2003, Annals of neurology.

[11]  Derek Besner,et al.  Ideographic and alphabetic processing in skilled reading of English , 1979, Neuropsychologia.

[12]  Todd B. Parrish,et al.  Language network specializations: An analysis with parallel task designs and functional magnetic resonance imaging , 2005, NeuroImage.

[13]  Karl J. Friston,et al.  Dynamic Diaschisis: Anatomically Remote and Context-Sensitive Human Brain Lesions , 2001, Journal of Cognitive Neuroscience.

[14]  Karl J. Friston,et al.  A Voxel-Based Morphometric Study of Ageing in 465 Normal Adult Human Brains , 2001, NeuroImage.

[15]  Colin M. Brown,et al.  The Neural Circuitry Involved in the Reading of German Words and Pseudowords: A PET Study , 1999, Journal of Cognitive Neuroscience.

[16]  Michael Erb,et al.  Cerebral pathways in processing of affective prosody: A dynamic causal modeling study , 2006, NeuroImage.

[17]  Karl J. Friston,et al.  A unified statistical approach for determining significant signals in images of cerebral activation , 1996, Human brain mapping.

[18]  M. Mesulam Primary progressive aphasia , 2001, Annals of neurology.

[19]  D. Pandya,et al.  Converging visual and somatic sensory cortical input to the intraparietal sulcus of the rhesus monkey , 1980, Brain Research.

[20]  Nancy Johnson,et al.  Preservation of Reasoning in Primary Progressive Aphasia: Further Differentiation from Alzheimer's Disease and the Behavioral Presentation of Frontotemporal Dementia , 2004, Journal of clinical and experimental neuropsychology.

[21]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[22]  M. E. Raichle,et al.  PET Studies of Auditory and Phonological Processing: Effects of Stimulus Characteristics and Task Demands , 1995, Journal of Cognitive Neuroscience.

[23]  D. N. Pandya,et al.  Further observations on parieto-temporal connections in the rhesus monkey , 2004, Experimental Brain Research.

[24]  Richard S. J. Frackowiak,et al.  Is developmental dyslexia a disconnection syndrome? Evidence from PET scanning. , 1996, Brain : a journal of neurology.

[25]  E. Kaplan,et al.  The Boston naming test , 2001 .

[26]  Richard S. J. Frackowiak,et al.  The anatomy of phonological and semantic processing in normal subjects. , 1992, Brain : a journal of neurology.

[27]  C. Büchel,et al.  Temporal and Spatial Dynamics of Brain Structure Changes during Extensive Learning , 2006, The Journal of Neuroscience.

[28]  Neil A. Macmillan,et al.  Detection Theory: A User's Guide , 1991 .

[29]  Karl J. Friston,et al.  Effective Connectivity and Intersubject Variability: Using a Multisubject Network to Test Differences and Commonalities , 2002, NeuroImage.

[30]  M. Mesulam,et al.  From sensation to cognition. , 1998, Brain : a journal of neurology.

[31]  S E Petersen,et al.  The processing of single words studied with positron emission tomography. , 1993, Annual review of neuroscience.

[32]  Karl J. Friston,et al.  Detecting Activations in PET and fMRI: Levels of Inference and Power , 1996, NeuroImage.

[33]  M. Catani,et al.  Axonal injury within language network in primary progressive aphasia , 2003, Annals of neurology.

[34]  R. Mohs,et al.  Consortium to establish a registry for Alzheimer's disease (CERAD) clinical and neuropsychological assessment of Alzheimer's disease. , 2002, Psychopharmacology bulletin.

[35]  M M Mesulam,et al.  Large‐scale neurocognitive networks and distributed processing for attention, language, and memory , 1990, Annals of neurology.

[36]  J. E. Davis,et al.  Crossing cultural divides: moral conflict and the Cairo population conference. , 1995, Virginia review of sociology.

[37]  D. Pandya,et al.  Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns , 1999, The European journal of neuroscience.

[38]  Karl J. Friston,et al.  Comparing dynamic causal models , 2004, NeuroImage.

[39]  Alex Martin,et al.  Representation of Manipulable Man-Made Objects in the Dorsal Stream , 2000, NeuroImage.

[40]  R. J. Zatorre,et al.  PET Studies of Phonological Processing: A Critical Reply to Poeppel , 1996, Brain and Language.

[41]  M. Weiner,et al.  Cognition and anatomy in three variants of primary progressive aphasia , 2004, Annals of neurology.

[42]  A. Alavi,et al.  Slowly progressive aphasia without generalized dementia: Studies with positron emission tomography , 1986, Annals of neurology.

[43]  W. C. Halstead Brain and intelligence , 1947 .

[44]  Murray Grossman,et al.  The core and halo of primary progressive aphasia and semantic dementia , 2003, Annals of neurology.

[45]  J. B. Demb,et al.  Functional MRI measurement of language lateralization in Wada-tested patients. , 1995, Brain : a journal of neurology.

[46]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[47]  N. Geschwind Disconnexion syndromes in animals and man. II. , 1965, Brain : a journal of neurology.

[48]  J. Trojanowski,et al.  Prefrontal granular cortex of the rhesus monkey. II. Interhemispheric cortical afferents , 1977, Brain Research.

[49]  Allen R. Braun,et al.  Brain network interactions in auditory, visual and linguistic processing , 2004, Brain and Language.

[50]  Richard S. J. Frackowiak,et al.  The neural correlates of the verbal component of working memory , 1993, Nature.

[51]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[52]  P F Liddle,et al.  The role of the left prefrontal cortex in verbal processing: semantic processing or willed action? , 1994, Neuroreport.

[53]  H. Kucera,et al.  Computational analysis of present-day American English , 1967 .

[54]  D. Perani,et al.  Functional heterogeneity of left inferior frontal cortex as revealed by fMRI , 1997, Neuroreport.

[55]  T. Allison,et al.  Word recognition in the human inferior temporal lobe , 1994, Nature.

[56]  M. Mesulam,et al.  Spectrum of primary progressive aphasia. , 1992, Bailliere's clinical neurology.

[57]  Leslie G. Ungerleider,et al.  Discrete Cortical Regions Associated with Knowledge of Color and Knowledge of Action , 1995, Science.

[58]  R. C. Oldfield The assessment and analysis of handedness: the Edinburgh inventory. , 1971, Neuropsychologia.

[59]  D. Pandya,et al.  Parietal, temporal, and occipita projections to cortex of the superior temporal sulcus in the rhesus monkey: A retrograde tracer study , 1994, The Journal of comparative neurology.

[60]  S. Petersen,et al.  Neuroimaging studies of word reading. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[61]  S. Bookheimer,et al.  Form and Content Dissociating Syntax and Semantics in Sentence Comprehension , 1999, Neuron.

[62]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[63]  Derek K. Jones,et al.  Virtual in Vivo Interactive Dissection of White Matter Fasciculi in the Human Brain , 2002, NeuroImage.

[64]  Leslie G. Ungerleider,et al.  Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. , 1994, Cerebral cortex.

[65]  C. Price The anatomy of language: contributions from functional neuroimaging , 2000, Journal of anatomy.

[66]  Bogdan Draganski,et al.  Neuroplasticity: Changes in grey matter induced by training , 2004, Nature.

[67]  M. Mesulam,et al.  Slowly progressive aphasia without generalized dementia , 1982, Annals of neurology.

[68]  P. Matthews,et al.  Semantic Processing in the Left Inferior Prefrontal Cortex: A Combined Functional Magnetic Resonance Imaging and Transcranial Magnetic Stimulation Study , 2003, Journal of Cognitive Neuroscience.

[69]  K. Patterson,et al.  Disrupted temporal lobe connections in semantic dementia , 1998, NeuroImage.

[70]  D. Bub,et al.  Primary Progressive Aphasia: A Review of 112 Cases , 1997, Brain and Language.

[71]  A. Baddeley Working Memory: The Interface between Memory and Cognition , 1992, Journal of Cognitive Neuroscience.

[72]  V. Leirer,et al.  Development and validation of a geriatric depression screening scale: a preliminary report. , 1982, Journal of psychiatric research.

[73]  M. Mesulam,et al.  Shifts of Effective Connectivity within a Language Network during Rhyming and Spelling , 2005, The Journal of Neuroscience.

[74]  T. Yanagihara,et al.  Imaging in primary progressive aphasia , 1997, Neuroradiology.

[75]  N. Geschwind Disconnexion syndromes in animals and man. I. , 1965, Brain : a journal of neurology.

[76]  A. Dale,et al.  Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. , 1998, Science.

[77]  S. Folstein,et al.  "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. , 1975, Journal of psychiatric research.

[78]  S. Bookheimer Functional MRI of language: new approaches to understanding the cortical organization of semantic processing. , 2002, Annual review of neuroscience.

[79]  D. Pandya,et al.  Comparison of prefrontal architecture and connections. , 1996, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[80]  J. Fiez Phonology, Semantics, and the Role of the Left Inferior Prefrontal Cortex , 2022 .

[81]  M N Rossor,et al.  Heterogeneity in progressive aphasia due to focal cortical atrophy. A clinical and PET study. , 1990, Brain : a journal of neurology.

[82]  S. Weintraub,et al.  The Activities of Daily Living Questionnaire: A Validation Study in Patients with Dementia , 2004, Alzheimer disease and associated disorders.

[83]  J. Greene Contributions to Neuropsychological Assessment , 1995 .

[84]  E. Maguire,et al.  A combined neuropsychological and neuroimaging study of topographical and non-verbal memory in semantic dementia , 2003, Neuropsychologia.

[85]  U. Frith,et al.  Explicit and implicit processing of words and pseudowords by adult developmental dyslexics: A search for Wernicke's Wortschatz? , 1999, Brain : a journal of neurology.

[86]  M. Raichle,et al.  Linguistic processing. , 1997, International review of neurobiology.

[87]  D C Van Essen,et al.  Information processing in the primate visual system: an integrated systems perspective. , 1992, Science.

[88]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[89]  Maria Luisa Gorno-Tempini,et al.  Normal and pathological reading: converging data from lesion and imaging studies , 2003, NeuroImage.

[90]  Karl J. Friston,et al.  Spatial registration and normalization of images , 1995 .

[91]  Pippa J. Tyrrell,et al.  Heterogeneity in progressive aphasia due to focal cortical atrophy. A clinical and PET study , 1995 .

[92]  Joel R. Meyer,et al.  A large-scale distributed network for covert spatial attention: further anatomical delineation based on stringent behavioural and cognitive controls. , 1999, Brain : a journal of neurology.

[93]  E. Hoekendorf Hone your management skills for risk sharing. , 1997, Managed care strategies.

[94]  M. Mesulam,et al.  Primary progressive aphasia--a language-based dementia. , 2003, The New England journal of medicine.

[95]  D. Pandya,et al.  Limbic and sensory connections of the inferior parietal lobule (area PG) in the rhesus monkey: A study with a new method for horseradish peroxidase histochemistry , 1977, Brain Research.