Tetrathiafulvalene end-functionalized poly(N-isopropylacrylamide): a new class of amphiphilic polymer for the creation of multistimuli responsive micelles.

In this article, we report the formation of micelles from a tetrathiafulvalene (TTF) end-functionalized poly(N-isopropylacrylamide) (poly(NIPAM)) derivative (1). We have determined the critical aggregation concentration (CAC) and average diameter of the micelles using fluorescence spectroscopy and dynamic light scattering experiments, respectively. We have exploited the NIPAM backbone of the polymer to thermally transform the swollen hydrophilic poly(NIPAM) derivative to a more globular hydrophobic state at the lower critical solution temperature (LCST). Finally, we have shown that we can exploit the chemical oxidation and complexation properties of the TTF unit to disrupt the micelle architecture to release the hydrophobic dye Nile Red from the interior of the micelle.

[1]  Hui Fu,et al.  Redox-controlled ‘smart’ polyacrylamide solubility , 2010 .

[2]  Yi Chen,et al.  pH-sensitive supramolecular polypeptide-based micelles and reverse micelles mediated by hydrogen-bonding interactions or host-guest chemistry: characterization and in vitro controlled drug release. , 2010, The journal of physical chemistry. B.

[3]  Zhan-Ting Li,et al.  Vesicle self-assembly by tetrathiafulvalene derivatives in both polar and nonpolar solvents and pseudo-rotaxane mediated vesicle-to-microtube transformation. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[4]  Yi Chen,et al.  Dual Stimuli‐Responsive Supramolecular Polypeptide‐Based Hydrogel and Reverse Micellar Hydrogel Mediated by Host–Guest Chemistry , 2010 .

[5]  J. F. Stoddart,et al.  A redox-switchable [2]rotaxane in a liquid-crystalline state. , 2010, Chemical communications.

[6]  Ying Li,et al.  Dual redox responsive assemblies formed from diselenide block copolymers. , 2010, Journal of the American Chemical Society.

[7]  J. Lyskawa,et al.  Synthesis and Properties of Tetrathiafulvalene End-Functionalized Polymers Prepared via RAFT Polymerization , 2010 .

[8]  Adam E. Smith,et al.  Stimuli-responsive amphiphilic (co)polymers via RAFT polymerization , 2010 .

[9]  Jinming Hu,et al.  Multi-Responsive Supramolecular Double Hydrophilic Diblock Copolymer Driven by Host-Guest Inclusion Complexation between β-Cyclodextrin and Adamantyl Moieties , 2009 .

[10]  E. Yoshida Control of micellization induced by disproportionation of 2,2,6,6-tetramethylpiperidine-1-oxyl supported on side chains of a block copolymer , 2009 .

[11]  Roey J. Amir,et al.  Enzymatically triggered self-assembly of block copolymers. , 2009, Journal of the American Chemical Society.

[12]  Xi Zhang,et al.  Redox responsive supramolecular amphiphiles based on reversible charge transfer interactions. , 2009, Chemical communications.

[13]  Dong Yang,et al.  Synthesis of well‐defined amphiphilic graft copolymer bearing poly(2‐acryloyloxyethyl ferrocenecarboxylate) side chains via successive SET‐LRP and ATRP , 2009 .

[14]  Hua Wei,et al.  Thermo-sensitive polymeric micelles based on poly(N-isopropylacrylamide) as drug carriers , 2009 .

[15]  Daoyong Chen,et al.  Noncovalently connected micelles based on a β‐cyclodextrin‐containing polymer and adamantane end‐capped poly(ε‐caprolactone) via host–guest interactions , 2009 .

[16]  Xi Zhang,et al.  Tuning the Amphiphilicity of Building Blocks: Controlled Self‐Assembly and Disassembly for Functional Supramolecular Materials , 2009 .

[17]  Deqing Zhang,et al.  Tetrathiafulvalene (TTF) derivatives: key building-blocks for switchable processes. , 2009, Chemical communications.

[18]  S Thayumanavan,et al.  Multi-stimuli sensitive amphiphilic block copolymer assemblies. , 2009, Journal of the American Chemical Society.

[19]  Sébastien Lecommandoux,et al.  Polysaccharide-block-polypeptide copolymer vesicles: towards synthetic viral capsids. , 2009, Angewandte Chemie.

[20]  Y. Anraku,et al.  Monodispersed polymeric nanocapsules: spontaneous evolution and morphology transition from reducible hetero-PEG PICmicelles by controlled degradation. , 2009, Journal of the American Chemical Society.

[21]  Ian Soutar,et al.  Switching the conformational behaviour of poly(N-isopropyl acrylamide) , 2009 .

[22]  Peter X Ma,et al.  Polymeric core-shell assemblies mediated by host-guest interactions: versatile nanocarriers for drug delivery. , 2009, Angewandte Chemie.

[23]  Zhiyuan Zhong,et al.  Stimuli-responsive polymersomes for programmed drug delivery. , 2009, Biomacromolecules.

[24]  U. Schubert,et al.  Synthesis and Micellization of Coil-Rod-Coil Ruthenium(II) Terpyridine Assemblies , 2008 .

[25]  J. Fraser Stoddart,et al.  A redox-switchable alpha-cyclodextrin-based [2]rotaxane. , 2008, Journal of the American Chemical Society.

[26]  Zhaohui Zheng,et al.  Redox-responsive Inclusion Complexation between β-Cyclodextrin and Ferrocene-functionalized Poly(N-isopropylacrylamide) and its Effect on the Solution Properties of this Polymer , 2008 .

[27]  R. B. Grubbs,et al.  Reversible restructuring of aqueous block copolymer assemblies through stimulus-induced changes in amphiphilicity. , 2008, Journal of the American Chemical Society.

[28]  B. Sumerlin,et al.  RAFT-synthesized diblock and triblock copolymers: thermally-induced supramolecular assembly in aqueous media , 2008 .

[29]  M. Stenzel RAFT polymerization: an avenue to functional polymeric micelles for drug delivery. , 2008, Chemical communications.

[30]  Lixia Ren,et al.  pH‐/temperature‐sensitive supramolecular micelles based on cyclodextrin polyrotaxane , 2008 .

[31]  J. F. Stoddart,et al.  Organogel formation by a cholesterol-stoppered bistable [2]rotaxane and its dumbbell precursor. , 2008, Journal of the American Chemical Society.

[32]  S. Ganta,et al.  A review of stimuli-responsive nanocarriers for drug and gene delivery. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[33]  N. Rapoport Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery , 2007 .

[34]  Jeffrey A Hubbell,et al.  PEG-SS-PPS: reduction-sensitive disulfide block copolymer vesicles for intracellular drug delivery. , 2007, Biomacromolecules.

[35]  Y. Morishima Thermally responsive polymer vesicles. , 2007, Angewandte Chemie.

[36]  Concepció Rovira,et al.  Supramolecular conducting nanowires from organogels. , 2007, Angewandte Chemie.

[37]  J. Lutz,et al.  Solution self‐assembly of tailor‐made macromolecular building blocks prepared by controlled radical polymerization techniques , 2006 .

[38]  Yucheng Zhou,et al.  A new redox-resettable molecule-based half-adder with tetrathiafulvalene. , 2006, The journal of physical chemistry. B.

[39]  Yucheng Zhou,et al.  Binaphthalene molecules with tetrathiafulvalene units: CD spectrum modulation and new chiral molecular switches by reversible oxidation and reduction of tetrathiafulvalene units. , 2006, The Journal of organic chemistry.

[40]  F. Tanaka,et al.  Impact of end-group association and main-chain hydration on the thermosensitive properties of hydrophobically modified telechelic poly(N-isopropylacrylamides) in water , 2006 .

[41]  Daoben Zhu,et al.  A low-molecular-mass gelator with an electroactive tetrathiafulvalene group: tuning the gel formation by charge-transfer interaction and oxidation. , 2005, Journal of the American Chemical Society.

[42]  Shin‐ichiro Kawano,et al.  Creation of a mixed-valence state from one-dimensionally aligned TTF utilizing the self-assembling nature of a low molecular-weight gel. , 2005, Journal of the American Chemical Society.

[43]  P. Cremer,et al.  Specific ion effects on the water solubility of macromolecules: PNIPAM and the Hofmeister series. , 2005, Journal of the American Chemical Society.

[44]  G. Fleming,et al.  Synthetic micelle sensitive to IR light via a two-photon process. , 2005, Journal of the American Chemical Society.

[45]  I. Manners,et al.  Redox-induced synthesis and encapsulation of metal nanoparticles in shell-cross-linked organometallic nanotubes. , 2005, Journal of the American Chemical Society.

[46]  Johannes A A W Elemans,et al.  Self-assembled nanoreactors. , 2005, Chemical reviews.

[47]  Chaobin He,et al.  The effect of salt and pH on the phase-transition behaviors of temperature-sensitive copolymers based on N-isopropylacrylamide. , 2004, Biomaterials.

[48]  Deqing Zhang,et al.  4,5-dimethylthio-4'-[2-(9-anthryloxy)ethylthio]tetrathiafulvalene, a highly selective and sensitive chemiluminescence probe for singlet oxygen. , 2004, Journal of the American Chemical Society.

[49]  Martin Müller,et al.  Oxidation-responsive polymeric vesicles , 2004, Nature materials.

[50]  R. Spontak,et al.  Redox-active organometallic vesicles: aqueous self-assembly of a diblock copolymer with a hydrophilic polyferrocenylsilane polyelectrolyte block. , 2004, Angewandte Chemie.

[51]  Ian Soutar,et al.  Studies of the smart thermoresponsive behavior of copolymers of N-isopropylacrylamide and N, N-dimethylacrylamide in dilute aqueous solution , 2003 .

[52]  G. Riess,et al.  Micellization of block copolymers , 2003 .

[53]  K. Kataoka,et al.  Block copolymer micelles for drug delivery: design, characterization and biological significance. , 2001, Advanced drug delivery reviews.

[54]  Stoddart,et al.  Switching of pseudorotaxanes and catenanes incorporating a tetrathiafulvalene unit by redox and chemical inputs , 2000, The Journal of organic chemistry.

[55]  David J. Williams,et al.  A Three-Pole Supramolecular Switch† , 1999 .

[56]  M. Akashi,et al.  Effects of salt on the temperature and pressure responsive properties of poly(N-vinylisobutyramide) aqueous solutions , 1998 .

[57]  Vincenzo Balzani,et al.  A Chemically and Electrochemically Switchable [2]Catenane Incorporating a Tetrathiafulvalene Unit. , 1998, Angewandte Chemie.

[58]  N. Kuramoto,et al.  Property of thermo-sensitive and redox-active poly(N-cyclopropylacrylamide-co-vinylferrocene) and poly(N-isopropylacrylamide-co-vinylferrocene) , 1998 .

[59]  J. Fraser Stoddart,et al.  Electrochemically Induced Molecular Motions in Pseudorotaxanes: A Case of Dual‐Mode (Oxidative and Reductive) Dethreading , 1997 .

[60]  Leonid M. Goldenberg,et al.  A Redox-Active Tetrathiafulvalene [2]Pseudorotaxane: Spectroelectrochemical and Cyclic Voltammetric Studies of the Highly-Reversible Complexation/Decomplexation Process , 1997 .

[61]  H. Ringsdorf,et al.  Hydrophobically-modified poly(N-isopropylacrylamides) in water : a look by fluorescence techniques at the heat-induced phase transition , 1992 .

[62]  H. G. Schild Poly(N-isopropylacrylamide): experiment, theory and application , 1992 .

[63]  M. Bryce Recent progress on conducting organic charge-transfer salts , 1992 .

[64]  F. Winnik Fluorescence studies of aqueous solutions of poly(N-isopropylacrylamide) below and above their LCST , 1990 .

[65]  J. Georges,et al.  An electrochemical study of mixed solutions of β-cyclodextrin and sodium dodecyl sulfate , 1987 .

[66]  J. Georges,et al.  Electrochemical oxidation of hydrophobic compounds in aqueous micellar solutions and oil-in-water emulsions , 1986 .

[67]  L. Brus,et al.  Tetrathiafulvalene photoionization in micellar solutions. A time-resolved Raman scattering study of interfacial solvation , 1985 .

[68]  M. Grätzel,et al.  Rotating-disc electrode kinetic studies of the electron-transfer reactions of tetrathiofulvalene and its mono- and di-cations in aqueous/micellar media , 1984 .

[69]  M. Grätzel,et al.  Electrochemical investigations of the oxidation reactons of tetrathiofulvalene in micellar solution , 1983 .

[70]  M. Graetzel,et al.  Light-driven electron transfer from tetrathiafulvalene to porphyrins and Ru(bipy)32+. Charge separation by organized assemblies , 1982 .