Composite Dark Matter and Neutrino Masses from a Light Hidden Sector
暂无分享,去创建一个
C. Kilic | Z. Chacko | Aqeel Ahmed | S. Najjari | S. Doshi | Niral Desai
[1] J. I. Crespo-Anadón,et al. The present and future status of heavy neutral leptons , 2022, Journal of Physics G: Nuclear and Particle Physics.
[2] Jun Yu Li,et al. First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment. , 2022, Physical review letters.
[3] J. Beacom,et al. Towards Powerful Probes of Neutrino Self-Interactions in Supernovae , 2022, 2206.12426.
[4] Atlas Collaboration. Search for heavy neutral leptons in decays of $W$ bosons using a dilepton displaced vertex in $\sqrt{s}=13$ TeV $pp$ collisions with the ATLAS detector , 2022, 2204.11988.
[5] J. Cline. Dark atoms and composite dark matter , 2021, SciPost Physics Lecture Notes.
[6] M. Decowski,et al. Limits on Astrophysical Antineutrinos with the KamLAND Experiment , 2021, The Astrophysical Journal.
[7] N. Iovine,et al. Indirect search for dark matter in the Galactic Centre with IceCube , 2021, International Conference on Rebooting Computing.
[8] J. Wudka,et al. Self-interacting neutrino portal dark matter , 2021 .
[9] P. Fox,et al. Neutrino masses from low scale partial compositeness , 2020, Journal of High Energy Physics.
[10] A. Pukhov,et al. Recasting direct detection limits within micrOMEGAs and implication for non-standard dark matter scenarios , 2020, The European Physical Journal C.
[11] C. Argüelles,et al. Dark matter annihilation to neutrinos , 2019, Reviews of Modern Physics.
[12] M. Hartz,et al. Indirect search for dark matter from the Galactic Center and halo with the Super-Kamiokande detector , 2020, 2005.05109.
[13] N. Bell,et al. Searching for Sub-GeV dark matter in the galactic centre using Hyper-Kamiokande , 2020, Journal of Cosmology and Astroparticle Physics.
[14] Ryan E. Keeley,et al. Strong constraints on thermal relic dark matter from Fermi-LAT observations of the Galactic Center , 2020, 2003.10416.
[15] C. Kilic,et al. Suppressed flavor violation in lepton flavored dark matter from an extra dimension , 2020, Physical Review D.
[16] M. Drewes,et al. Heavy neutrinos in displaced vertex searches at the LHC and HL-LHC , 2019, Journal of High Energy Physics.
[17] F. Schinzel,et al. Fermi Large Area Telescope Fourth Source Catalog , 2019, The Astrophysical Journal Supplement Series.
[18] J. P. Rodrigues,et al. Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment , 2018, Physical Review D.
[19] Lan V. Truong,et al. Search for heavy neutral leptons in decays of W bosons produced in 13 TeV pp collisions using prompt and displaced signatures with the ATLAS detector , 2019, Journal of High Energy Physics.
[20] Vitaly Beylin,et al. Hadronic and Hadron-Like Physics of Dark Matter , 2019, Symmetry.
[21] M. Aoki,et al. Search for heavy neutrinos in π → μν decay , 2019, Physics Letters B.
[22] M. Hartz,et al. Search for heavy neutrinos with the T2K near detector ND280 , 2019, Physical Review D.
[23] M. Escudero. Neutrino decoupling beyond the Standard Model: CMB constraints on the Dark Matter mass with a fast and precise Neff evaluation , 2018, Journal of Cosmology and Astroparticle Physics.
[24] Matthew McCullough,et al. Long-lived particles at the energy frontier: the MATHUSLA physics case , 2018, Reports on progress in physics. Physical Society.
[25] Z. A. Ibrahim,et al. COMET Phase-I technical design report , 2018, 1812.09018.
[26] S. Ando,et al. Constraints on MeV dark matter using neutrino detectors and their implication for the 21-cm results , 2018, Physical Review D.
[27] B. Abi. The DUNE Far Detector Interim Design Report, Volume 2: Single-Phase Module , 2018 .
[28] D. P. Méndez,et al. The DUNE Far Detector Interim Design Report Volume 1: Physics, Technology and Strategies , 2018 .
[29] D. P. Méndez,et al. The DUNE Far Detector Interim Design Report, Volume 3: Dual-Phase Module , 2018, 1807.10340.
[30] S. Pascoli,et al. Implications of a Dark Matter-Neutrino Coupling at Hyper-Kamiokande , 2018, 1805.09830.
[31] Alexey Boyarsky,et al. Phenomenology of GeV-scale heavy neutral leptons , 2018, Journal of High Energy Physics.
[32] J.Coleman,et al. Hyper-Kamiokande Design Report , 2018, 1805.04163.
[33] V. M. Ghete,et al. Search for Heavy Neutral Leptons in Events with Three Charged Leptons in Proton-Proton Collisions at sqrt[s]=13 TeV. , 2018, Physical review letters.
[34] S. Trojanowski,et al. Heavy Neutral Leptons at FASER , 2018, 1801.08947.
[35] Annecy,et al. Dark matter-neutrino interactions through the lens of their cosmological implications , 2017, 1711.05283.
[36] Barmak Shams Es Haghi,et al. Thermal dark matter through the Dirac neutrino portal , 2017, 1709.07001.
[37] R. Mohapatra,et al. Same sign versus opposite sign dileptons as a probe of low scale seesaw mechanisms , 2017, 1709.06553.
[38] K. Agashe. Baryon Number in Warped GUTs : Model Building and (Dark Matter Related) Phenomenology , 2018 .
[39] P. Giardino,et al. Unified scenario for composite right-handed neutrinos and dark matter , 2017, 1709.01082.
[40] S. Tulin,et al. Dark Matter Self-interactions and Small Scale Structure , 2017, 1705.02358.
[41] A. Heijboer,et al. Results from the search for dark matter in the Milky Way with 9 years of data of the ANTARES neutrino telescope , 2016, 1612.04595.
[42] Hiren H. Patel. Package-X 2.0: A Mathematica package for the analytic calculation of one-loop integrals , 2016, Comput. Phys. Commun..
[43] D. Gerdes,et al. SEARCHING FOR DARK MATTER ANNIHILATION IN RECENTLY DISCOVERED MILKY WAY SATELLITES WITH FERMI-LAT , 2016, 1611.03184.
[44] M. Venturini,et al. Search for the lepton flavour violating decay μ+→ e +γ with the full dataset of the MEG experiment: MEG Collaboration , 2016 .
[45] V. Sanz,et al. Sterile neutrino portal to Dark Matter II: exact dark symmetry , 2016, 1607.02373.
[46] A. Soni,et al. Hidden SU(N) glueball dark matter , 2016, 1602.00714.
[47] M. Weber,et al. Physics reach of the XENON1T dark matter experiment. , 2015, 1512.07501.
[48] K. Agashe,et al. Warped seesaw mechanism is physically inverted , 2015, 1512.06742.
[49] A. Gouvea,et al. Global Constraints on a Heavy Neutrino , 2015, 1511.00683.
[50] O. Agertz,et al. Dark matter cores all the way down , 2015, 1508.04143.
[51] T. Slatyer. Indirect dark matter signatures in the cosmic dark ages. I. Generalizing the bound on s-wave dark matter annihilation from Planck results , 2015, 1506.03811.
[52] R.Gill,et al. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF , 2015, 1512.06148.
[53] R. D’Agnolo,et al. Light Dark Matter from Forbidden Channels. , 2015, Physical review letters.
[54] Zheng Wang,et al. Neutrino Physics with JUNO , 2015, 1507.05613.
[55] B. Shuve,et al. Multilepton and lepton jet probes of sub-weak-scale right-handed neutrinos , 2015, 1504.02470.
[56] J. Chiang,et al. Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data. , 2015, Physical review letters.
[57] G. Steigman,et al. BBN and the CMB constrain neutrino coupled light WIMPs , 2014, 1411.6005.
[58] Peter Skands,et al. An introduction to PYTHIA 8.2 , 2014, Comput. Phys. Commun..
[59] R.Gill,et al. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF , 2015, 1512.06148.
[60] H. Murayama,et al. Model for Thermal Relic Dark Matter of Strongly Interacting Massive Particles. , 2015, Physical review letters.
[61] N. Dhanaraj,et al. Mu2e Technical Design Report , 2015, 1501.05241.
[62] M. Walker,et al. DWARF GALAXY ANNIHILATION AND DECAY EMISSION PROFILES FOR DARK MATTER EXPERIMENTS , 2014, 1408.0002.
[63] Adrian T. Lee,et al. A GUIDE TO DESIGNING FUTURE GROUND-BASED COSMIC MICROWAVE BACKGROUND EXPERIMENTS , 2014 .
[64] R. Frederix,et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations , 2014, 1405.0301.
[65] D. Robinson,et al. Dynamical framework for KeV Dirac neutrino warm dark matter , 2014, 1404.7118.
[66] P. Demin,et al. DELPHES 3: a modular framework for fast simulation of a generic collider experiment , 2014, Journal of High Energy Physics.
[67] Zuowei Liu,et al. Composite strongly interacting dark matter , 2013, 1312.3325.
[68] J. Wudka,et al. Pionic dark matter , 2013, Journal of High Energy Physics.
[69] M. Dolan,et al. A lower bound on the mass of cold thermal dark matter from Planck , 2013, 1303.6270.
[70] D. Robinson,et al. KeV warm dark matter and composite neutrinos , 2012, 1205.0569.
[71] H. Aihara,et al. Letter of Intent: The Hyper-Kamiokande Experiment --- Detector Design and Physics Potential --- , 2011, 1109.3262.
[72] Damien P. George,et al. Gravity on a little warped space , 2011, 1107.0755.
[73] R. S. Hundi,et al. Constraints on composite Dirac neutrinos from observations of galaxy clusters , 2011, 1105.0291.
[74] K. L. McDonald. Light Neutrinos from a Mini-Seesaw Mechanism in Warped Space , 2010, 1010.2659.
[75] Y. Grossman,et al. Composite Dirac neutrinos , 2010, 1009.2781.
[76] Yang Bai,et al. Weakly Interacting Stable Pions , 2010, 1005.0008.
[77] G. Cacciapaglia,et al. Dimensions of supersymmetric operators from AdS/CFT , 2009 .
[78] F. Ling,et al. Scalar multiplet dark matter , 2009, 0903.4010.
[79] M. Quirós,et al. Conformal neutrinos: An alternative to the see-saw mechanism , 2008, 0901.0006.
[80] V. A. Mukhin,et al. Fe b 20 09 Study of the decay K + → π + νν̄ in the momentum region 140 < P π < 199 MeV / c , 2009 .
[81] Y. Grossman,et al. Leptogenesis with composite neutrinos , 2008, 0811.0871.
[82] S. Pascoli,et al. Is it possible to explain neutrino masses with scalar dark matter , 2008 .
[83] Amarjit Soni,et al. The Little Randall-Sundrum Model at the Large Hadron Collider , 2008, 0802.0203.
[84] M. Serone,et al. Dark Matter and Electroweak Symmetry Breaking in Models with Warped Extra Dimensions , 2008, 0801.1645.
[85] Alexander Pukhov,et al. Dirac neutrino dark matter , 2007, 0706.0526.
[86] B. Gripaios. Neutrinos in a sterile throat , 2006, hep-ph/0611218.
[87] E. Ma. Verifiable radiative seesaw mechanism of neutrino mass and dark matter , 2006, hep-ph/0601225.
[88] Takemichi Okui. Searching for composite neutrinos in the cosmic microwave background , 2004, hep-ph/0405083.
[89] R. Foot,et al. Mirror Matter-Type Dark Matter , 2004, astro-ph/0407623.
[90] A. Pomarol,et al. Holography for fermions , 2004, hep-th/0406257.
[91] K. Agashe,et al. Warped unification, proton stability, and dark matter. , 2004, Physical review letters.
[92] T. Gherghetta. Dirac neutrino masses with planck scale lepton number violation. , 2003, Physical review letters.
[93] S. Huber,et al. Seesaw mechanism in warped geometry , 2003, hep-ph/0309252.
[94] S. Fukudaa,et al. The Super-Kamiokande detector , 2003 .
[95] S. Huber,et al. Majorana neutrinos in a warped 5D standard model , 2002, hep-ph/0205327.
[96] M. Pospelov,et al. Self-interacting dark matter from the hidden heterotic-string sector , 2000, hep-ph/0008223.
[97] G. Fuller,et al. Sterile Neutrino Hot, Warm, and Cold Dark Matter , 2001, astro-ph/0101524.
[98] L. Randall,et al. Holography and phenomenology , 2000, hep-th/0012148.
[99] Z. Berezhiani,et al. The early mirror universe: inflation, baryogenesis, nucleosynthesis and dark matter , 2000, hep-ph/0008105.
[100] A. Zaffaroni,et al. Comments on the holographic picture of the Randall-Sundrum model , 2000, hep-th/0012248.
[101] W. Porod,et al. Phenomenology of , 2000 .
[102] E. al.,et al. Search for neutral heavy leptons in a high-energy neutrino beam , 1999, hep-ex/9908011.
[103] E. Witten,et al. Ads/CFT correspondence and symmetry breaking , 1999, hep-th/9905104.
[104] L. Randall,et al. A Large mass hierarchy from a small extra dimension , 1999, hep-ph/9905221.
[105] G. Fuller,et al. New Dark Matter Candidate: Nonthermal Sterile Neutrinos , 1998, astro-ph/9810076.
[106] Y. Grossman,et al. Light active and sterile neutrinos from compositeness , 1998, hep-ph/9806223.
[107] E. Witten. Anti-de Sitter space and holography , 1998, hep-th/9802150.
[108] A. Polyakov,et al. Gauge Theory Correlators from Non-Critical String Theory , 1998, hep-th/9802109.
[109] H. Murayama,et al. Sneutrino cold dark matter with lepton-number violation 1 This work was supported in part by the US , 1997, hep-ph/9712515.
[110] G. Lake,et al. The Structure of Cold Dark Matter Halos , 1998 .
[111] J. Maldacena. The Large-N Limit of Superconformal Field Theories and Supergravity , 1997, hep-th/9711200.
[112] E. Vallazza,et al. Search for neutral heavy leptons produced in Z decays , 1997 .
[113] Widrow,et al. Sterile neutrinos as dark matter. , 1993, Physical review letters.
[114] Hodges,et al. Mirror baryons as the dark matter. , 1993, Physical review. D, Particles and fields.
[115] M. Dris,et al. Further limits on heavy neutrino couplings , 1988 .
[116] J. Valle,et al. Neutrino mass and baryon-number nonconservation in superstring models. , 1986, Physical review. D, Particles and fields.
[117] R. Mohapatra,et al. Mechanism for understanding small neutrino mass in superstring theories. , 1986, Physical review letters.
[118] M. Dris,et al. Search for Neutrino Decay , 1986 .
[119] J. Hagelin,et al. Perhaps scalar neutrinos are the lightest supersymmetric partners , 1984 .
[120] L. Ibáñez. The scalar neutrinos as the lightest supersymmetric particles and cosmology , 1984 .