Composite Dark Matter and Neutrino Masses from a Light Hidden Sector

We study a class of models in which the particle that constitutes dark matter arises as a composite state of a strongly coupled hidden sector. The hidden sector interacts with the Standard Model through the neutrino portal, allowing the relic abundance of dark matter to be set by annihilation into final states containing neutrinos. The coupling to the hidden sector also leads to the generation of neutrino masses through the inverse seesaw mechanism, with composite hidden sector states playing the role of the singlet neutrinos. We focus on the scenario in which the hidden sector is conformal in the ultraviolet, and the compositeness scale lies at or below the weak scale. We construct a holographic realization of this framework based on the Randall-Sundrum setup and explore the implications for experiments. We determine the current constraints on this scenario from direct and indirect detection, lepton flavor violation and collider experiments and explore the reach of future searches. We show that in the near future, direct detection experiments and searches for $\mu \rightarrow e$ conversion will be able to probe new parameter space. At colliders, dark matter can be produced in association with composite singlet neutrinos via Drell Yan processes or in weak decays of hadrons. We show that current searches at the Large Hadron Collider have only limited sensitivity to this new production channel and we comment on how the reconstruction of the singlet neutrinos can potentially expand the reach.

[1]  J. I. Crespo-Anadón,et al.  The present and future status of heavy neutral leptons , 2022, Journal of Physics G: Nuclear and Particle Physics.

[2]  Jun Yu Li,et al.  First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment. , 2022, Physical review letters.

[3]  J. Beacom,et al.  Towards Powerful Probes of Neutrino Self-Interactions in Supernovae , 2022, 2206.12426.

[4]  Atlas Collaboration Search for heavy neutral leptons in decays of $W$ bosons using a dilepton displaced vertex in $\sqrt{s}=13$ TeV $pp$ collisions with the ATLAS detector , 2022, 2204.11988.

[5]  J. Cline Dark atoms and composite dark matter , 2021, SciPost Physics Lecture Notes.

[6]  M. Decowski,et al.  Limits on Astrophysical Antineutrinos with the KamLAND Experiment , 2021, The Astrophysical Journal.

[7]  N. Iovine,et al.  Indirect search for dark matter in the Galactic Centre with IceCube , 2021, International Conference on Rebooting Computing.

[8]  J. Wudka,et al.  Self-interacting neutrino portal dark matter , 2021 .

[9]  P. Fox,et al.  Neutrino masses from low scale partial compositeness , 2020, Journal of High Energy Physics.

[10]  A. Pukhov,et al.  Recasting direct detection limits within micrOMEGAs and implication for non-standard dark matter scenarios , 2020, The European Physical Journal C.

[11]  C. Argüelles,et al.  Dark matter annihilation to neutrinos , 2019, Reviews of Modern Physics.

[12]  M. Hartz,et al.  Indirect search for dark matter from the Galactic Center and halo with the Super-Kamiokande detector , 2020, 2005.05109.

[13]  N. Bell,et al.  Searching for Sub-GeV dark matter in the galactic centre using Hyper-Kamiokande , 2020, Journal of Cosmology and Astroparticle Physics.

[14]  Ryan E. Keeley,et al.  Strong constraints on thermal relic dark matter from Fermi-LAT observations of the Galactic Center , 2020, 2003.10416.

[15]  C. Kilic,et al.  Suppressed flavor violation in lepton flavored dark matter from an extra dimension , 2020, Physical Review D.

[16]  M. Drewes,et al.  Heavy neutrinos in displaced vertex searches at the LHC and HL-LHC , 2019, Journal of High Energy Physics.

[17]  F. Schinzel,et al.  Fermi Large Area Telescope Fourth Source Catalog , 2019, The Astrophysical Journal Supplement Series.

[18]  J. P. Rodrigues,et al.  Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment , 2018, Physical Review D.

[19]  Lan V. Truong,et al.  Search for heavy neutral leptons in decays of W bosons produced in 13 TeV pp collisions using prompt and displaced signatures with the ATLAS detector , 2019, Journal of High Energy Physics.

[20]  Vitaly Beylin,et al.  Hadronic and Hadron-Like Physics of Dark Matter , 2019, Symmetry.

[21]  M. Aoki,et al.  Search for heavy neutrinos in π → μν decay , 2019, Physics Letters B.

[22]  M. Hartz,et al.  Search for heavy neutrinos with the T2K near detector ND280 , 2019, Physical Review D.

[23]  M. Escudero Neutrino decoupling beyond the Standard Model: CMB constraints on the Dark Matter mass with a fast and precise Neff evaluation , 2018, Journal of Cosmology and Astroparticle Physics.

[24]  Matthew McCullough,et al.  Long-lived particles at the energy frontier: the MATHUSLA physics case , 2018, Reports on progress in physics. Physical Society.

[25]  Z. A. Ibrahim,et al.  COMET Phase-I technical design report , 2018, 1812.09018.

[26]  S. Ando,et al.  Constraints on MeV dark matter using neutrino detectors and their implication for the 21-cm results , 2018, Physical Review D.

[27]  B. Abi The DUNE Far Detector Interim Design Report, Volume 2: Single-Phase Module , 2018 .

[28]  D. P. Méndez,et al.  The DUNE Far Detector Interim Design Report Volume 1: Physics, Technology and Strategies , 2018 .

[29]  D. P. Méndez,et al.  The DUNE Far Detector Interim Design Report, Volume 3: Dual-Phase Module , 2018, 1807.10340.

[30]  S. Pascoli,et al.  Implications of a Dark Matter-Neutrino Coupling at Hyper-Kamiokande , 2018, 1805.09830.

[31]  Alexey Boyarsky,et al.  Phenomenology of GeV-scale heavy neutral leptons , 2018, Journal of High Energy Physics.

[32]  J.Coleman,et al.  Hyper-Kamiokande Design Report , 2018, 1805.04163.

[33]  V. M. Ghete,et al.  Search for Heavy Neutral Leptons in Events with Three Charged Leptons in Proton-Proton Collisions at sqrt[s]=13  TeV. , 2018, Physical review letters.

[34]  S. Trojanowski,et al.  Heavy Neutral Leptons at FASER , 2018, 1801.08947.

[35]  Annecy,et al.  Dark matter-neutrino interactions through the lens of their cosmological implications , 2017, 1711.05283.

[36]  Barmak Shams Es Haghi,et al.  Thermal dark matter through the Dirac neutrino portal , 2017, 1709.07001.

[37]  R. Mohapatra,et al.  Same sign versus opposite sign dileptons as a probe of low scale seesaw mechanisms , 2017, 1709.06553.

[38]  K. Agashe Baryon Number in Warped GUTs : Model Building and (Dark Matter Related) Phenomenology , 2018 .

[39]  P. Giardino,et al.  Unified scenario for composite right-handed neutrinos and dark matter , 2017, 1709.01082.

[40]  S. Tulin,et al.  Dark Matter Self-interactions and Small Scale Structure , 2017, 1705.02358.

[41]  A. Heijboer,et al.  Results from the search for dark matter in the Milky Way with 9 years of data of the ANTARES neutrino telescope , 2016, 1612.04595.

[42]  Hiren H. Patel Package-X 2.0: A Mathematica package for the analytic calculation of one-loop integrals , 2016, Comput. Phys. Commun..

[43]  D. Gerdes,et al.  SEARCHING FOR DARK MATTER ANNIHILATION IN RECENTLY DISCOVERED MILKY WAY SATELLITES WITH FERMI-LAT , 2016, 1611.03184.

[44]  M. Venturini,et al.  Search for the lepton flavour violating decay μ+→ e +γ with the full dataset of the MEG experiment: MEG Collaboration , 2016 .

[45]  V. Sanz,et al.  Sterile neutrino portal to Dark Matter II: exact dark symmetry , 2016, 1607.02373.

[46]  A. Soni,et al.  Hidden SU(N) glueball dark matter , 2016, 1602.00714.

[47]  M. Weber,et al.  Physics reach of the XENON1T dark matter experiment. , 2015, 1512.07501.

[48]  K. Agashe,et al.  Warped seesaw mechanism is physically inverted , 2015, 1512.06742.

[49]  A. Gouvea,et al.  Global Constraints on a Heavy Neutrino , 2015, 1511.00683.

[50]  O. Agertz,et al.  Dark matter cores all the way down , 2015, 1508.04143.

[51]  T. Slatyer Indirect dark matter signatures in the cosmic dark ages. I. Generalizing the bound on s-wave dark matter annihilation from Planck results , 2015, 1506.03811.

[52]  R.Gill,et al.  Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF , 2015, 1512.06148.

[53]  R. D’Agnolo,et al.  Light Dark Matter from Forbidden Channels. , 2015, Physical review letters.

[54]  Zheng Wang,et al.  Neutrino Physics with JUNO , 2015, 1507.05613.

[55]  B. Shuve,et al.  Multilepton and lepton jet probes of sub-weak-scale right-handed neutrinos , 2015, 1504.02470.

[56]  J. Chiang,et al.  Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data. , 2015, Physical review letters.

[57]  G. Steigman,et al.  BBN and the CMB constrain neutrino coupled light WIMPs , 2014, 1411.6005.

[58]  Peter Skands,et al.  An introduction to PYTHIA 8.2 , 2014, Comput. Phys. Commun..

[59]  R.Gill,et al.  Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF , 2015, 1512.06148.

[60]  H. Murayama,et al.  Model for Thermal Relic Dark Matter of Strongly Interacting Massive Particles. , 2015, Physical review letters.

[61]  N. Dhanaraj,et al.  Mu2e Technical Design Report , 2015, 1501.05241.

[62]  M. Walker,et al.  DWARF GALAXY ANNIHILATION AND DECAY EMISSION PROFILES FOR DARK MATTER EXPERIMENTS , 2014, 1408.0002.

[63]  Adrian T. Lee,et al.  A GUIDE TO DESIGNING FUTURE GROUND-BASED COSMIC MICROWAVE BACKGROUND EXPERIMENTS , 2014 .

[64]  R. Frederix,et al.  The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations , 2014, 1405.0301.

[65]  D. Robinson,et al.  Dynamical framework for KeV Dirac neutrino warm dark matter , 2014, 1404.7118.

[66]  P. Demin,et al.  DELPHES 3: a modular framework for fast simulation of a generic collider experiment , 2014, Journal of High Energy Physics.

[67]  Zuowei Liu,et al.  Composite strongly interacting dark matter , 2013, 1312.3325.

[68]  J. Wudka,et al.  Pionic dark matter , 2013, Journal of High Energy Physics.

[69]  M. Dolan,et al.  A lower bound on the mass of cold thermal dark matter from Planck , 2013, 1303.6270.

[70]  D. Robinson,et al.  KeV warm dark matter and composite neutrinos , 2012, 1205.0569.

[71]  H. Aihara,et al.  Letter of Intent: The Hyper-Kamiokande Experiment --- Detector Design and Physics Potential --- , 2011, 1109.3262.

[72]  Damien P. George,et al.  Gravity on a little warped space , 2011, 1107.0755.

[73]  R. S. Hundi,et al.  Constraints on composite Dirac neutrinos from observations of galaxy clusters , 2011, 1105.0291.

[74]  K. L. McDonald Light Neutrinos from a Mini-Seesaw Mechanism in Warped Space , 2010, 1010.2659.

[75]  Y. Grossman,et al.  Composite Dirac neutrinos , 2010, 1009.2781.

[76]  Yang Bai,et al.  Weakly Interacting Stable Pions , 2010, 1005.0008.

[77]  G. Cacciapaglia,et al.  Dimensions of supersymmetric operators from AdS/CFT , 2009 .

[78]  F. Ling,et al.  Scalar multiplet dark matter , 2009, 0903.4010.

[79]  M. Quirós,et al.  Conformal neutrinos: An alternative to the see-saw mechanism , 2008, 0901.0006.

[80]  V. A. Mukhin,et al.  Fe b 20 09 Study of the decay K + → π + νν̄ in the momentum region 140 < P π < 199 MeV / c , 2009 .

[81]  Y. Grossman,et al.  Leptogenesis with composite neutrinos , 2008, 0811.0871.

[82]  S. Pascoli,et al.  Is it possible to explain neutrino masses with scalar dark matter , 2008 .

[83]  Amarjit Soni,et al.  The Little Randall-Sundrum Model at the Large Hadron Collider , 2008, 0802.0203.

[84]  M. Serone,et al.  Dark Matter and Electroweak Symmetry Breaking in Models with Warped Extra Dimensions , 2008, 0801.1645.

[85]  Alexander Pukhov,et al.  Dirac neutrino dark matter , 2007, 0706.0526.

[86]  B. Gripaios Neutrinos in a sterile throat , 2006, hep-ph/0611218.

[87]  E. Ma Verifiable radiative seesaw mechanism of neutrino mass and dark matter , 2006, hep-ph/0601225.

[88]  Takemichi Okui Searching for composite neutrinos in the cosmic microwave background , 2004, hep-ph/0405083.

[89]  R. Foot,et al.  Mirror Matter-Type Dark Matter , 2004, astro-ph/0407623.

[90]  A. Pomarol,et al.  Holography for fermions , 2004, hep-th/0406257.

[91]  K. Agashe,et al.  Warped unification, proton stability, and dark matter. , 2004, Physical review letters.

[92]  T. Gherghetta Dirac neutrino masses with planck scale lepton number violation. , 2003, Physical review letters.

[93]  S. Huber,et al.  Seesaw mechanism in warped geometry , 2003, hep-ph/0309252.

[94]  S. Fukudaa,et al.  The Super-Kamiokande detector , 2003 .

[95]  S. Huber,et al.  Majorana neutrinos in a warped 5D standard model , 2002, hep-ph/0205327.

[96]  M. Pospelov,et al.  Self-interacting dark matter from the hidden heterotic-string sector , 2000, hep-ph/0008223.

[97]  G. Fuller,et al.  Sterile Neutrino Hot, Warm, and Cold Dark Matter , 2001, astro-ph/0101524.

[98]  L. Randall,et al.  Holography and phenomenology , 2000, hep-th/0012148.

[99]  Z. Berezhiani,et al.  The early mirror universe: inflation, baryogenesis, nucleosynthesis and dark matter , 2000, hep-ph/0008105.

[100]  A. Zaffaroni,et al.  Comments on the holographic picture of the Randall-Sundrum model , 2000, hep-th/0012248.

[101]  W. Porod,et al.  Phenomenology of , 2000 .

[102]  E. al.,et al.  Search for neutral heavy leptons in a high-energy neutrino beam , 1999, hep-ex/9908011.

[103]  E. Witten,et al.  Ads/CFT correspondence and symmetry breaking , 1999, hep-th/9905104.

[104]  L. Randall,et al.  A Large mass hierarchy from a small extra dimension , 1999, hep-ph/9905221.

[105]  G. Fuller,et al.  New Dark Matter Candidate: Nonthermal Sterile Neutrinos , 1998, astro-ph/9810076.

[106]  Y. Grossman,et al.  Light active and sterile neutrinos from compositeness , 1998, hep-ph/9806223.

[107]  E. Witten Anti-de Sitter space and holography , 1998, hep-th/9802150.

[108]  A. Polyakov,et al.  Gauge Theory Correlators from Non-Critical String Theory , 1998, hep-th/9802109.

[109]  H. Murayama,et al.  Sneutrino cold dark matter with lepton-number violation 1 This work was supported in part by the US , 1997, hep-ph/9712515.

[110]  G. Lake,et al.  The Structure of Cold Dark Matter Halos , 1998 .

[111]  J. Maldacena The Large-N Limit of Superconformal Field Theories and Supergravity , 1997, hep-th/9711200.

[112]  E. Vallazza,et al.  Search for neutral heavy leptons produced in Z decays , 1997 .

[113]  Widrow,et al.  Sterile neutrinos as dark matter. , 1993, Physical review letters.

[114]  Hodges,et al.  Mirror baryons as the dark matter. , 1993, Physical review. D, Particles and fields.

[115]  M. Dris,et al.  Further limits on heavy neutrino couplings , 1988 .

[116]  J. Valle,et al.  Neutrino mass and baryon-number nonconservation in superstring models. , 1986, Physical review. D, Particles and fields.

[117]  R. Mohapatra,et al.  Mechanism for understanding small neutrino mass in superstring theories. , 1986, Physical review letters.

[118]  M. Dris,et al.  Search for Neutrino Decay , 1986 .

[119]  J. Hagelin,et al.  Perhaps scalar neutrinos are the lightest supersymmetric partners , 1984 .

[120]  L. Ibáñez The scalar neutrinos as the lightest supersymmetric particles and cosmology , 1984 .