Testing Equivalence for Processes

Given a set of processes and a set of tests on these processes we show how to define in a natural way three different equivalences on processes. These equivalences are applied to a particular language CCS. We give associated complete proof systems and fully abstract models. These models have a simple representation in terms of trees.

[1]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[2]  Dana S. Scott,et al.  Data Types as Lattices , 1976, SIAM J. Comput..

[3]  C. A. R. Hoare,et al.  A Theory of Communicating Sequential Processes , 1984, JACM.

[4]  Irène Guessarian,et al.  Algebraic semantics , 1981, Lecture Notes in Computer Science.

[5]  Matthew Hennessy,et al.  Powerdomains and nondeterministic recursive definitions , 1982, Symposium on Programming.

[6]  Gordon D. Plotkin,et al.  A Powerdomain Construction , 1976, SIAM J. Comput..

[7]  C. A. R. Hoare,et al.  A Theory of Nondeterminism , 1980, ICALP.

[8]  Matthew Hennessy,et al.  A Term Model for CCS , 1980, MFCS.

[9]  Philippe Darondeau,et al.  An enlarged definition and complete axiomatization of observational congruence of finite processes , 1982, Symposium on Programming.

[10]  Stephen D. Brookes,et al.  Possible futures, acceptances, refusals, and communicating processes , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[11]  Joseph A. Goguen,et al.  Initial Algebra Semantics and Continuous Algebras , 1977, J. ACM.

[12]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[13]  C. A. R. Hoare,et al.  A Model for Communicating Sequential Processes , 1980, On the Construction of Programs.

[14]  Joseph E. Stoy,et al.  Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory , 1981 .