Step-controlled epitaxial growth of SiC: High quality homoepitaxy

[1]  G. Pensl,et al.  Electrical and Optical Characterization of SiC , 2003 .

[2]  A. Burk,et al.  The role of excess silicon and in situ etching on 4HSiC and 6HSiC epitaxial layer morphology , 1996 .

[3]  S. Sriram,et al.  4H-SiC MESFET's with 42 GHz f/sub max/ , 1996, IEEE Electron Device Letters.

[4]  Sota Kobayashi,et al.  Effects of Channel Mobility on SiC Power Metal-Oxide-Semiconductor Field Effect Transistor Performance , 1996 .

[5]  R. Davis,et al.  Vicinal and on-axis surfaces of 6H-SiC(0001) thin films observed by scanning tunneling microscopy , 1996 .

[6]  Max J. Schulz,et al.  Band offsets and electronic structure of SiC/SiO2 interfaces , 1996 .

[7]  T. Kimoto,et al.  Excellent reverse blocking characteristics of high-voltage 4H-SiC Schottky rectifiers with boron-implanted edge termination , 1996, IEEE Electron Device Letters.

[8]  J.H. Zhao,et al.  A high-current and high-temperature 6H-SiC thyristor , 1996, IEEE Electron Device Letters.

[9]  V. I. Fistul Heavily Doped Semiconductors , 1995 .

[10]  W. J. Choyke,et al.  Nitrogen donors and deep levels in high‐quality 4H–SiC epilayers grown by chemical vapor deposition , 1995 .

[11]  H. Matsunami,et al.  Incorporation mechanism of N, Al, and B impurities in chemical vapor deposition of SiC , 1995 .

[12]  N. Tokura,et al.  Current-Voltage and Capacitance-Voltage Characteristics of Metal/Oxide/6H-Silicon Carbide Structure , 1995 .

[13]  C. Weitzel,et al.  Comparison of SiC, GaAs, and Si RF MESFET power densities , 1995, IEEE Electron Device Letters.

[14]  Anne Henry,et al.  A 4.5 kV 6H silicon carbide rectifier , 1995 .

[15]  H. Matsunami,et al.  Surface diffusion lengths of adatoms on 6H‐SiC{0001} faces in chemical vapor deposition of SiC , 1995 .

[16]  Y. Seki,et al.  The guard-ring termination for the high-voltage SiC Schottky barrier diodes , 1995, IEEE Electron Device Letters.

[17]  H. Matsunami,et al.  Step bunching in chemical vapor deposition of 6H– and 4H–SiC on vicinal SiC(0001) faces , 1995 .

[18]  T. Kimoto,et al.  High performance of high-voltage 4H-SiC Schottky barrier diodes , 1995, IEEE Electron Device Letters.

[19]  R. Raghunathan,et al.  High voltage 4H-SiC Schottky barrier diodes , 1995, IEEE Electron Device Letters.

[20]  Phillip B. Abel,et al.  Surface morphology of silicon carbide epitaxial films , 1995 .

[21]  M. Skowronski,et al.  Semi‐insulating 6H–SiC grown by physical vapor transport , 1995 .

[22]  A. Henry,et al.  Long minority carrier lifetimes in 6H SiC grown by chemical vapor deposition , 1995 .

[23]  W. J. Choyke,et al.  Anisotropy of the electron Hall mobility in 4H, 6H, and 15R silicon carbide , 1994 .

[24]  H. Matsunami,et al.  Nucleation and step motion in chemical vapor deposition of SiC on 6H‐SiC{0001} faces , 1994 .

[25]  R. Davis,et al.  Effects of gas flow ratio on silicon carbide thin film growth mode and polytype formation during gas-source molecular beam epitaxy , 1994 .

[26]  E. Janzén,et al.  Possible lifetime‐limiting defect in 6H SiC , 1994 .

[27]  A. Henry,et al.  Photoluminescence determination of the nitrogen doping concentration in 6H‐SiC , 1994 .

[28]  M. Melloch,et al.  Monolithic NMOS digital integrated circuits in 6H-SiC , 1994, IEEE Electron Device Letters.

[29]  D. Alok,et al.  A simple edge termination for silicon carbide devices with nearly ideal breakdown voltage , 1994, IEEE Electron Device Letters.

[30]  Philip G. Neudeck,et al.  Site‐competition epitaxy for superior silicon carbide electronics , 1994 .

[31]  V. Tsvetkov,et al.  Scanning tunnelling microscopy on the 6H SiC(0001) surface , 1994 .

[32]  J. Lyding,et al.  Scanning tunneling microscopy of step bunching on vicinal GaAs(100) annealed at high temperatures , 1994 .

[33]  H. Morkoç,et al.  Large‐band‐gap SiC, III‐V nitride, and II‐VI ZnSe‐based semiconductor device technologies , 1994 .

[34]  H. Matsunami,et al.  Deep levels in 6H‐SiC wafers and step‐controlled epitaxial layers , 1994 .

[35]  H. Mitlehner,et al.  SiC devices: physics and numerical simulation , 1994 .

[36]  M. Melloch,et al.  A vertically integrated bipolar storage cell in 6H silicon carbide for nonvolatile memory applications , 1994, IEEE Electron Device Letters.

[37]  Philip G. Neudeck,et al.  2000 V 6H-SIC P-N JUNCTION DIODES GROWN BY CHEMICAL VAPOR DEPOSITION , 1994 .

[38]  R. C. Clarke,et al.  Large diameter 6H-SiC for microwave device applications , 1994 .

[39]  P. Neudeck,et al.  Performance limiting micropipe defects in silicon carbide wafers , 1994, IEEE Electron Device Letters.

[40]  P. Morfouli,et al.  High temperature silicon carbide MOSFETs with very low drain leakage current , 1994 .

[41]  H. Matsunami,et al.  Surface kinetics of adatoms in vapor phase epitaxial growth of SiC on 6H‐SiC{0001} vicinal surfaces , 1994 .

[42]  T. Urushidani,et al.  High-voltage (>1 kV) SiC Schottky barrier diodes with low on-resistances , 1993, IEEE Electron Device Letters.

[43]  M. Ghezzo,et al.  Boron-implanted 6H-SiC diodes , 1993 .

[44]  W. J. Choyke,et al.  Aluminum acceptor four particle bound exciton complex in 4H, 6H, and 3C SiC , 1993 .

[45]  J. Waldrop,et al.  Schottky barrier height and interface chemistry of annealed metal contacts to alpha 6H‐SiC: Crystal face dependence , 1993 .

[46]  A. Steckl,et al.  Atomic probe microscopy of 3C SiC films grown on 6H SiC substrates , 1993 .

[47]  R. Stein Formation of macrodefects in SiC , 1993 .

[48]  W. Suttrop,et al.  CVD growth and characterization of single-crystalline 6H silicon carbide , 1993 .

[49]  W. Suttrop,et al.  Nitrogen donors in 4H‐silicon carbide , 1993 .

[50]  John W. Palmour,et al.  6H–silicon carbide devices and applications , 1993 .

[51]  M. Kasu,et al.  Equilibrium multiatomic step structure of GaAs(001) vicinal surfaces grown by metalorganic chemical vapor deposition , 1993 .

[52]  B. J. Baliga,et al.  Comparison of 6H-SiC, 3C-SiC, and Si for power devices , 1993 .

[53]  Richard Joseph Saia,et al.  Silicon carbide UV photodiodes , 1993 .

[54]  H. Matsunami,et al.  Growth mechanism of 6H-SiC in step-controlled epitaxy , 1993 .

[55]  W. Suttrop,et al.  Chemical vapor deposition and characterization of undoped and nitrogen‐doped single crystalline 6H‐SiC , 1992 .

[56]  Robert F. Davis,et al.  Metal Schottky barrier contacts to alpha 6H:SiC , 1992 .

[57]  A. Yamashita,et al.  Homoepitaxial Chemical Vapor Deposition of 6H-SiC at Low Temperatures on {011̄4} Substrates , 1992 .

[58]  W. J. Choyke,et al.  Hall effect and infrared absorption measurements on nitrogen donors in 6H‐silicon carbide , 1992 .

[59]  B. J. Baliga,et al.  Silicon-carbide high-voltage (400 V) Schottky barrier diodes , 1992, IEEE Electron Device Letters.

[60]  P. Ivanov,et al.  Recent developments in SiC single-crystal electronics , 1992 .

[61]  Richard J. Needs,et al.  The Preference of Silicon Carbide for Growth in the Metastable Cubic Form , 1991 .

[62]  W. J. Choyke,et al.  Controlled growth of 3C‐SiC and 6H‐SiC films on low‐tilt‐angle vicinal (0001) 6H‐SiC wafers , 1991 .

[63]  William A. Tiller,et al.  The Science of Crystallization: Microscopic Interfacial Phenomena , 1991 .

[64]  R. Davis,et al.  Insitu incorporation of Al and N andp-n junction diode fabrication in alpha(6H)-SiC thin films , 1991 .

[65]  Robert J. Kee,et al.  A Model of Silicon Carbide Chemical Vapor Deposition , 1991 .

[66]  Wang,et al.  Terrace-width distributions on vicinal Si(111). , 1990, Physical review letters.

[67]  W. Suttrop,et al.  Boron-related deep centers in 6H-SiC , 1990 .

[68]  H. Matsunami,et al.  Crystal growth of SiC by step-controlled epitaxy , 1990 .

[69]  W. J. Choyke,et al.  Growth of high quality 6H‐SiC epitaxial films on vicinal (0001) 6H‐SiC wafers , 1990 .

[70]  R. Davis,et al.  Growth rate, surface morphology, and defect microstructures of β–SiC films chemically vapor deposited on 6H–SiC substrates , 1989 .

[71]  Robert F. Davis,et al.  Chemical vapor deposition and characterization of 6H‐SiC thin films on off‐axis 6H‐SiC substrates , 1988 .

[72]  C. Stinespring,et al.  Gas phase kinetics analysis and implications for silicon carbide chemical vapor deposition , 1988 .

[73]  K. Endo,et al.  Heteroepitaxial growth of SiC polytypes , 1987 .

[74]  Lee,et al.  Optically detected magnetic resonance study of SiC:Ti. , 1985, Physical review. B, Condensed matter.

[75]  W. Tiller,et al.  Computer modeling of Si and SiC surfaces and surface processes relevant to crystal growth from the vapor , 1984 .

[76]  H. Matsunami,et al.  Thermal Oxidation of SiC and Electrical Properties of Al–SiO2–SiC MOS Structure , 1982 .

[77]  V. Tsvetkov,et al.  General principles of growing large-size single crystals of various silicon carbide polytypes , 1981 .

[78]  Takahiro Tanaka,et al.  Site effect on the impurity levels in 4 H , 6 H , and 1 5 R SiC , 1980 .

[79]  E. Pettenpaul,et al.  Saturated electron drift velocity in 6H silicon carbide , 1977 .

[80]  I. Pfaffeneder,et al.  Breakdown field in vapor‐grown silicon carbide p‐n junctions , 1977 .

[81]  J. W. Faust,et al.  Silicon Carbide—1973 , 1977 .

[82]  S. Lilov,et al.  Studies of growth kinetics and polytypism of silicon carbide epitaxial layers grown from the vapour phase , 1976 .

[83]  W. Münch,et al.  Thermal Oxidation and Electrolytic Etching of Silicon Carbide , 1975 .

[84]  S. H. Hagen,et al.  Proof of the involvement of Ti in the low-temperature ABC luminescence spectrum of 6H SiC , 1974 .

[85]  J. Powell,et al.  Epitaxial growth of 6H SiC in the temperature range 1320–1390°C , 1973 .

[86]  J. Nishizawa,et al.  Silicon epitaxial growth , 1972 .

[87]  H. Peek,et al.  A Stagnant Layer Model for the Epitaxial Growth of Silicon from Silane in a Horizontal Reactor , 1970 .

[88]  G. Booker,et al.  A study of nucleation in chemically grown epitaxial silicon films using molecular beam techniques III. Nucleation rate measurements and the effect of oxygen on initial growth behaviour , 1967 .

[89]  H. C. Chang,et al.  The Epitaxial Growth of Silicon Carbide , 1966 .

[90]  P. Krishna,et al.  Polymorphism and Polytypism in Crystals , 1966 .

[91]  G. A. Slack,et al.  Thermal Conductivity of Pure and Impure Silicon, Silicon Carbide, and Diamond , 1964 .

[92]  M. Melloch,et al.  Experimental demonstration of a buried-channel charge-coupled device in 6H silicon carbide , 1996, IEEE Electron Device Letters.

[93]  Roland Rupp,et al.  First results on silicon carbide vapour phase epitaxy growth in a new type of vertical low pressure chemical vapour deposition reactor , 1995 .

[94]  J. Takahashi,et al.  Sublimation growth of SiC single crystalline ingots on faces perpendicular to the (0001) basal plane , 1994 .

[95]  K. Koga,et al.  Single crystals of SiC and their application to blue LEDs , 1992 .

[96]  G. Harris,et al.  Amorphous and Crystalline Silicon Carbide III , 1992 .

[97]  W. Knauer Scattering of noble gas clusters with energies in the keV range , 1990 .

[98]  Hideyo Okushi,et al.  Isothermal Capacitance Transient Spectroscopy , 1980 .

[99]  I. Pfaffeneder,et al.  Epitaxial deposition of silicon carbide from silicon tetrachloride and hexane , 1976 .

[100]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[101]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[102]  J. Hirth,et al.  Condensation and evaporation : nucleation and growth kinetics , 1963 .

[103]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .