High temperature durability of a bond-coatless plasma-sprayed thermal barrier coating system with laser textured Ni-based single crystal substrate

[1]  H. Liao,et al.  Laser surface texturing to enhance adhesion bond strength of spray coatings – Cold spraying, wire-arc spraying, and atmospheric plasma spraying , 2017, Surface and Coatings Technology.

[2]  T. Sentenac,et al.  Influence of isothermal aging conditions on APS TBC's interfacial fracture toughness , 2017 .

[3]  X. Peng,et al.  The promoted formation of an α-Al2O3 scale on a nickel aluminide with surface Cr2O3 particles , 2016 .

[4]  J. Cormier,et al.  Role of Powder Granulometry and Substrate Topography in Adhesion Strength of Thermal Spray Coatings , 2016, Journal of Thermal Spray Technology.

[5]  M. Boustie,et al.  Laser adhesion test for thermal sprayed coatings on textured surface by laser , 2016 .

[6]  L. Berthe,et al.  Laser Patterning Pretreatment before Thermal Spraying: A Technique to Adapt and Control the Surface Topography to Thermomechanical Loading and Materials , 2016, Journal of thermal spray technology (Print).

[7]  M. Boustie,et al.  Laser surface patterning to enhance adhesion of plasma sprayed coatings , 2015 .

[8]  M. Bäker,et al.  Stress evolution in thermal barrier coatings for rocket engine applications , 2015 .

[9]  M. Okazaki,et al.  Thermo-mechanical Fatigue Failure of Thermal Barrier Coated Superalloy Specimen , 2015, Metallurgical and Materials Transactions A.

[10]  Pauline Audigié Modélisation de l'interdiffusion et du comportement en oxydation cyclique de superalliages monocristallins à base de nickel revêtus d'une sous-couche γ-γ’ riche en platine. Extension aux systèmes barrière thermique , 2015 .

[11]  U. Glatzel,et al.  High-Temperature Oxidation Behavior of Two Nickel-Based Superalloys Produced by Metal Injection Molding for Aero Engine Applications , 2014, Metallurgical and Materials Transactions A.

[12]  G. Farrahi,et al.  Thermo-mechanical stress analysis of thermal barrier coating system considering thickness and roughness effects , 2014 .

[13]  Jean-Roch Vaunois Modélisation de la durée de vie des barrières thermiques, par le développement et l'exploitation d'essais d'adhérence , 2013 .

[14]  Khaled S. Al-Athel,et al.  Modeling decohesion of a top-coat from a thermally-growing oxide in a thermal barrier coating , 2013 .

[15]  Laurent Berthe,et al.  State-of-the-art laser adhesion test (LASAT) , 2011 .

[16]  E. Fedorova,et al.  High-temperature oxidation of nickel-based alloys and estimation of the adhesion strength of resulting oxide layers , 2011 .

[17]  M. He,et al.  Oxide-Assisted Degradation of Ni-Base Single Crystals During Cyclic Loading: the Role of Coatings , 2011 .

[18]  Z. Hu,et al.  Effect of surface recrystallization on the creep rupture properties of a nickel-base single crystal superalloy , 2010 .

[19]  Liu Shizhong,et al.  Surface Recrystallization in Nickel Base Single Crystal Superalloy DD6 , 2010 .

[20]  J. Cormier,et al.  Very high temperature creep behavior of a single crystal Ni-based superalloy under complex thermal cycling conditions , 2010 .

[21]  H. Evans,et al.  The effect of bond coat oxidation on the microstructure and endurance of a thermal barrier coating system , 2009 .

[22]  E. Andrieu,et al.  Cyclic oxidation of coated and uncoated single-crystal nickel-based superalloy MC2 analyzed by continuous thermogravimetry analysis , 2006 .

[23]  D. Zhu,et al.  Fracture behavior under mixed-mode loading of ceramic plasma-sprayed thermal barrier coatings at ambient and elevated temperatures , 2005 .

[24]  David R. Clarke,et al.  Thermal barrier coating materials , 2005 .

[25]  J. Hutchinson,et al.  An analytical model of rumpling in thermal barrier coatings , 2005 .

[26]  D. Poquillon,et al.  Cyclic Oxidation Kinetics Modeling of NiAl Single Crystal , 2004 .

[27]  D. Furrer,et al.  γ' formation in superalloy U720LI , 1999 .

[28]  B. Pieraggi,et al.  Determination of Parabolic Rate Constants from a Local Analysis of Mass-Gain Curves , 1998 .

[29]  R. Fabbro,et al.  SHOCK WAVES FROM A WATER-CONFINED LASER-GENERATED PLASMA , 1997 .

[30]  W. Porter,et al.  Oxidation and degradation of a plasma-sprayed thermal barrier coating system , 1996 .

[31]  L. M. Barker,et al.  Laser interferometer for measuring high velocities of any reflecting surface , 1972 .

[32]  M. He,et al.  Oxidation-Assisted Crack Growth in Single-Crystal Superalloys during Fatigue with Compressive Holds , 2017, Metallurgical and Materials Transactions A.

[33]  J. Mendez,et al.  High-Temperature Creep Degradation of the AM1/NiAlPt/EBPVD YSZ System , 2013, Metallurgical and Materials Transactions A.

[34]  Lorenz Singheiser,et al.  Investigation of the high-temperature performance of thermal barrier coating systems for steam turbine applications , 2011 .

[35]  J. Absi,et al.  Modeling of the Residual Stresses and their Effects on the TBC System After Thermal Cycling Using Finite Element Method , 2010 .

[36]  R. Reed,et al.  INFLUENCE OF THE γ' FRACTION ON THE γ/γ' TOPOLOGICAL INVERSION DURING HIGH TEMPERATURE CREEP OF SINGLE CRYSTAL SUPERALLOYS , 2008 .

[37]  Paul G. Klemens,et al.  Ceramic materials for thermal barrier coatings , 2004 .

[38]  V. V. Semak,et al.  A concept for a hydrodynamic model of keyhole formation and support during laser welding , 1994 .