Normal form decomposition for Gaussian-to-Gaussian superoperators
暂无分享,去创建一个
Giacomo De Palma | Alexander S. Holevo | Vittorio Giovannetti | Andrea Mari | A. Holevo | V. Giovannetti | A. Mari | G. Palma
[1] Marco G. Genoni,et al. Detecting quantum non-Gaussianity via the Wigner function , 2013, 1304.3340.
[2] J. Cirac,et al. Characterization of Gaussian operations and distillation of Gaussian states , 2002, quant-ph/0204085.
[3] Barbara M. Terhal,et al. The power of noisy fermionic quantum computation , 2012, 1208.5334.
[4] C. Caves,et al. Quantum limits on bosonic communication rates , 1994 .
[5] A. Holevo,et al. A Solution of Gaussian Optimizer Conjecture for Quantum Channels , 2015 .
[6] David C. Lay,et al. Linear Algebra and Its Applications, 4th Edition , 1994 .
[7] M. Paris,et al. Quantum non-Gaussianity witnesses in phase space , 2014, 1403.6264.
[8] P. Shor,et al. Entanglement assisted capacity of the broadband Lossy channel. , 2003, Physical review letters.
[9] Alexander S. Holevo,et al. One-mode quantum Gaussian channels: Structure and quantum capacity , 2007, Probl. Inf. Transm..
[10] Bart Demoen,et al. Completely positive maps on the CCR-algebra , 1977 .
[11] Seth Lloyd,et al. Gaussian quantum information , 2011, 1110.3234.
[12] Detecting quantum non-Gaussianity of noisy Schrödinger cat states , 2013, 1309.4221.
[13] J. Eisert,et al. Directly estimating nonclassicality. , 2010, Physical review letters.
[14] J. Williamson. On the Algebraic Problem Concerning the Normal Forms of Linear Dynamical Systems , 1936 .
[15] R. Werner,et al. Mixed states with positive Wigner functions , 1995 .
[16] Anna Vershynina. Complete criterion for convex-Gaussian-state detection , 2014, 1409.8480.
[17] W. Vogel,et al. Nonclassicality of quantum states: a hierarchy of observable conditions. , 2002, Physical review letters.
[18] M. Sentís. Quantum theory of open systems , 2002 .
[19] S. Lloyd,et al. Classical capacity of the lossy bosonic channel: the exact solution. , 2003, Physical review letters.
[20] A. Holevo,et al. Ultimate classical communication rates of quantum optical channels , 2014, Nature Photonics.
[21] Radim Filip,et al. Detecting quantum states with a positive Wigner function beyond mixtures of Gaussian states. , 2011, Physical review letters.
[22] W. Vogel,et al. Nonclassicality quasiprobability of single-photon-added thermal states , 2011, 1101.1741.
[23] M. Fannes. Quasi-free states and automorphisms of the CCR-algebra , 1976 .
[24] Radim Filip,et al. Experimental test of the quantum non-Gaussian character of a heralded single-photon state. , 2011, Physical review letters.
[25] Leiba Rodman,et al. Canonical forms for symmetric/skew-symmetric real matrix pairs under strict equivalence and congruence , 2005 .
[26] L. Ballentine,et al. Probabilistic and Statistical Aspects of Quantum Theory , 1982 .
[27] A. Holevo,et al. One-mode bosonic Gaussian channels: a full weak-degradability classification , 2006, quant-ph/0609013.
[28] Marco G. Genoni,et al. Quantifying the non-Gaussian character of a quantum state by quantum relative entropy , 2007, 0805.1645.
[29] S. Braunstein,et al. Quantum Information with Continuous Variables , 2004, quant-ph/0410100.
[30] N. Dias,et al. The Narcowich-Wigner spectrum of a pure state , 2008, 0812.0043.
[31] V. F. D'yachenko,et al. PROBLEMS OF INFORMATION TRANSMISSION. INSTITUTE OF INFORMATION TRANSMISSION (SELECTED ARTICLES). , 1966 .
[32] R. Werner,et al. Evaluating capacities of bosonic Gaussian channels , 1999, quant-ph/9912067.
[33] Marco G. Genoni,et al. Quantifying non-Gaussianity for quantum information , 2010, 1008.4243.
[34] Marco G. Genoni,et al. Measure of the non-Gaussian character of a quantum state , 2007, 0704.0639.
[35] M. Wolf,et al. Quantum capacities of bosonic channels. , 2006, Physical review letters.
[36] M. Lewenstein,et al. Quantum Entanglement , 2020, Quantum Mechanics.