Normal form decomposition for Gaussian-to-Gaussian superoperators

In this paper we explore the set of linear maps sending the set of quantum Gaussian states into itself. These maps are in general not positive, a feature which can be exploited as a test to check whether a given quantum state belongs to the convex hull of Gaussian states (if one of the considered maps sends it into a non positive operator, the above state is certified not to belong to the set). Generalizing a result known to be valid under the assumption of complete positivity, we provide a characterization of these Gaussian-to-Gaussian (not necessarily positive) superoperators in terms of their action on the characteristic function of the inputs. For the special case of one-mode mappings we also show that any Gaussian-to-Gaussian superoperator can be expressed as a concatenation of a phase-space dilatation, followed by the action of a completely positive Gaussian channel, possibly composed with a transposition. While a similar decomposition is shown to fail in the multi-mode scenario, we prove that it still holds at least under the further hypothesis of homogeneous action on the covariance matrix.

[1]  Marco G. Genoni,et al.  Detecting quantum non-Gaussianity via the Wigner function , 2013, 1304.3340.

[2]  J. Cirac,et al.  Characterization of Gaussian operations and distillation of Gaussian states , 2002, quant-ph/0204085.

[3]  Barbara M. Terhal,et al.  The power of noisy fermionic quantum computation , 2012, 1208.5334.

[4]  C. Caves,et al.  Quantum limits on bosonic communication rates , 1994 .

[5]  A. Holevo,et al.  A Solution of Gaussian Optimizer Conjecture for Quantum Channels , 2015 .

[6]  David C. Lay,et al.  Linear Algebra and Its Applications, 4th Edition , 1994 .

[7]  M. Paris,et al.  Quantum non-Gaussianity witnesses in phase space , 2014, 1403.6264.

[8]  P. Shor,et al.  Entanglement assisted capacity of the broadband Lossy channel. , 2003, Physical review letters.

[9]  Alexander S. Holevo,et al.  One-mode quantum Gaussian channels: Structure and quantum capacity , 2007, Probl. Inf. Transm..

[10]  Bart Demoen,et al.  Completely positive maps on the CCR-algebra , 1977 .

[11]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[12]  Detecting quantum non-Gaussianity of noisy Schrödinger cat states , 2013, 1309.4221.

[13]  J. Eisert,et al.  Directly estimating nonclassicality. , 2010, Physical review letters.

[14]  J. Williamson On the Algebraic Problem Concerning the Normal Forms of Linear Dynamical Systems , 1936 .

[15]  R. Werner,et al.  Mixed states with positive Wigner functions , 1995 .

[16]  Anna Vershynina Complete criterion for convex-Gaussian-state detection , 2014, 1409.8480.

[17]  W. Vogel,et al.  Nonclassicality of quantum states: a hierarchy of observable conditions. , 2002, Physical review letters.

[18]  M. Sentís Quantum theory of open systems , 2002 .

[19]  S. Lloyd,et al.  Classical capacity of the lossy bosonic channel: the exact solution. , 2003, Physical review letters.

[20]  A. Holevo,et al.  Ultimate classical communication rates of quantum optical channels , 2014, Nature Photonics.

[21]  Radim Filip,et al.  Detecting quantum states with a positive Wigner function beyond mixtures of Gaussian states. , 2011, Physical review letters.

[22]  W. Vogel,et al.  Nonclassicality quasiprobability of single-photon-added thermal states , 2011, 1101.1741.

[23]  M. Fannes Quasi-free states and automorphisms of the CCR-algebra , 1976 .

[24]  Radim Filip,et al.  Experimental test of the quantum non-Gaussian character of a heralded single-photon state. , 2011, Physical review letters.

[25]  Leiba Rodman,et al.  Canonical forms for symmetric/skew-symmetric real matrix pairs under strict equivalence and congruence , 2005 .

[26]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[27]  A. Holevo,et al.  One-mode bosonic Gaussian channels: a full weak-degradability classification , 2006, quant-ph/0609013.

[28]  Marco G. Genoni,et al.  Quantifying the non-Gaussian character of a quantum state by quantum relative entropy , 2007, 0805.1645.

[29]  S. Braunstein,et al.  Quantum Information with Continuous Variables , 2004, quant-ph/0410100.

[30]  N. Dias,et al.  The Narcowich-Wigner spectrum of a pure state , 2008, 0812.0043.

[31]  V. F. D'yachenko,et al.  PROBLEMS OF INFORMATION TRANSMISSION. INSTITUTE OF INFORMATION TRANSMISSION (SELECTED ARTICLES). , 1966 .

[32]  R. Werner,et al.  Evaluating capacities of bosonic Gaussian channels , 1999, quant-ph/9912067.

[33]  Marco G. Genoni,et al.  Quantifying non-Gaussianity for quantum information , 2010, 1008.4243.

[34]  Marco G. Genoni,et al.  Measure of the non-Gaussian character of a quantum state , 2007, 0704.0639.

[35]  M. Wolf,et al.  Quantum capacities of bosonic channels. , 2006, Physical review letters.

[36]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.