Atom based RF electric field sensing

Atom-based measurements of length, time, gravity, inertial forces and electromagnetic fields are receiving increasing attention. Atoms possess properties that suggest clear advantages as self calibrating platforms for measurements of these quantities. In this review, we describe work on a new method for measuring radio frequency (RF) electric fields based on quantum interference using either Cs or Rb atoms contained in a dielectric vapor cell. Using a bright resonance prepared within an electromagnetically induced transparency window it is possible to achieve high sensitivities, <1 μV cm−1 Hz−1/2, and detect small RF electric fields μV cm−1 with a modest setup. Some of the limitations of the sensitivity are addressed in the review. The method can be used to image RF electric fields and can be adapted to measure the vector electric field amplitude. Extensions of Rydberg atom-based electrometry for frequencies up to the terahertz regime are described.

[1]  J. Kitching,et al.  A chip-scale atomic clock based on 87Rb with improved frequency stability. , 2005, Optics express.

[2]  Morgan W. Mitchell,et al.  Sub-projection-noise sensitivity in broadband atomic magnetometry. , 2010, Physical review letters.

[3]  J. Camparo Atomic Stabilization of Electromagnetic Field Strength Using Rabi Resonances , 1998 .

[4]  James P. Shaffer,et al.  Coherent excitation of Rydberg atoms in micrometre-sized atomic vapour cells , 2010 .

[5]  F. Jessen,et al.  Detrimental adsorbate fields in experiments with cold Rydberg gases near surfaces , 2012, 1208.0680.

[6]  Second order coupling between excited atoms and surface polaritons , 2012, 1206.6621.

[7]  A K Mohapatra,et al.  Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency. , 2007, Physical review letters.

[8]  O. Dulieu,et al.  Determination of the Cs{sub 2} 0{sub g}{sup -}(P{sub 3/2}) potential curve and of Cs 6P{sub 1/2,3/2} atomic radiative lifetimes from photoassociation spectroscopy , 2002 .

[9]  M. Kanda Standard probes for electromagnetic field measurements , 1993 .

[10]  Wei Zhang,et al.  An optical lattice clock with accuracy and stability at the 10−18 level , 2013, Nature.

[11]  James P. Shaffer,et al.  Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances , 2012, Nature Physics.

[12]  E. Amrhein,et al.  Low-temperature microwave absorption in insulating materials , 1968 .

[13]  W. Li,et al.  Millimeter-wave spectroscopy of cold Rb Rydberg atoms in a magneto-optical trap: Quantum defects of the ns, np, and nd series , 2003 .

[14]  M. Vellekoop,et al.  Glass-to-glass anodic bonding with standard IC technology thin films as intermediate layers , 2000 .

[15]  G. Pelosi,et al.  Genetic algorithms for the determination of the nonlinearity model coefficients in passive intermodulation scattering , 2004, IEEE Transactions on Electromagnetic Compatibility.

[16]  T. Pfau,et al.  Fabrication and characterization of an electrically contacted vapor cell. , 2012, Optics letters.

[17]  K. A. Smith,et al.  Use of the Stark effect to minimize residual electric fields in an experimental volume , 1993 .

[18]  G. Barton Van der Waals shifts in an atom near absorptive dielectric mirrors , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[19]  G. Leuchs,et al.  A photon detector for submillimetre wavelengths using Rydberg atoms , 1980 .

[20]  W. Westphal,et al.  Dielectric Constant and Loss Data , 1972 .

[21]  D. Yuping,et al.  The microwave electromagnetic characteristics of manganese dioxide with different crystallographic structures , 2010 .

[22]  K. Overstreet,et al.  Long Range Cs Rydberg Molecules , 2007 .

[23]  Christopher L. Holloway,et al.  Sub-wavelength imaging and field mapping via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms , 2014, 1404.0289.

[24]  Jelmer J. Renema,et al.  Erratum: Quantum Noise Limited and Entanglement-Assisted Magnetometry [Phys. Rev. Lett.104, 133601 (2010)] , 2010 .

[25]  M. Romalis,et al.  Subfemtotesla scalar atomic magnetometry using multipass cells. , 2012, Physical review letters.

[26]  Philipp Treutlein,et al.  Simple microwave field imaging technique using hot atomic vapor cells , 2012, 1207.4964.

[27]  K. J. Weatherill,et al.  A giant electro-optic effect using polarizable dark states , 2008, 0804.3273.

[28]  Holger Baur,et al.  Triple stack glass-to-glass anodic bonding for optogalvanic spectroscopy cells with electrical feedthroughs , 2014, 1403.1093.

[29]  K. S. Kleinbach,et al.  Rydberg atoms in hollow-core photonic crystal fibres , 2014, Nature communications.

[30]  J. Shaffer,et al.  Interactions in Ultracold Rydberg Gases , 2014 .

[31]  J. D. Martin,et al.  Electric field sensing near the surface microstructure of an atom chip using cold Rydberg atoms , 2012, 1206.7054.

[32]  Christopher L. Holloway,et al.  Broadband Rydberg Atom-Based Electric-Field Probe: From Self-Calibrated Measurements to Sub-Wavelength Imaging , 2014, 1405.7066.

[33]  N. Najafi,et al.  Long-term evaluation of hermetically glass frit sealed silicon to Pyrex wafers with feedthroughs , 2005 .

[34]  K. Overstreet,et al.  Effects of electric fields on ultracold Rydberg atom interactions , 2011 .

[35]  K. Singer,et al.  Long-range interactions between alkali Rydberg atom pairs correlated to the ns–ns, np–np and nd–nd asymptotes , 2005 .

[36]  J. Hoffnagle,et al.  Stark spectroscopy of forbidden two-photon transitions: a sensitive probe for the quantitative measurement of small electric fields , 1986 .

[37]  E. Cornell,et al.  Measuring Electric Fields from Surface Contaminants with Neutral Atoms , 2007, 0705.2027.

[38]  R. Schlesser,et al.  Light-beam deflection by cesium vapor in a transverse-magnetic field. , 1992, Optics letters.

[39]  Michael B. Steer,et al.  Passive Intermodulation Distortion in Antennas , 2015, IEEE Transactions on Antennas and Propagation.

[40]  K. Overstreet,et al.  Analysis of long-range Cs Rydberg potential wells , 2007 .

[41]  J. Marangos,et al.  Electromagnetically induced transparency : Optics in coherent media , 2005 .

[42]  C. Adams,et al.  Refractive index measurements by probe-beam deflection , 2004 .

[43]  H. Giessen,et al.  Fabrication method for microscopic vapor cells for alkali atoms. , 2010, Optics letters.

[44]  P. Vainikainen,et al.  Near-field scanner for the detection of passive intermodulation sources in base station antennas , 2004, IEEE Transactions on Electromagnetic Compatibility.

[45]  H. Hotop,et al.  LASER PHOTOELECTRON ATTACHMENT TO MOLECULES IN A SKIMMED SUPERSONIC BEAM :DIAGNOSTICS OF WEAK ELECTRIC FIELDS AND ATTACHMENT CROSS SECTIONS DOWN TO 2 0 MU E V , 1998 .

[46]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[47]  Dalgarno,et al.  Dispersion coefficients for alkali-metal dimers. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[48]  S Kumar,et al.  Subwavelength microwave electric-field imaging using Rydberg atoms inside atomic vapor cells. , 2014, Optics letters.

[49]  John L. Hall,et al.  Nobel Lecture: Defining and measuring optical frequencies , 2006 .

[50]  Christopher L. Holloway,et al.  Broadband Rydberg Atom-Based Electric-Field Probe for SI-Traceable, Self-Calibrated Measurements , 2014, IEEE Transactions on Antennas and Propagation.

[51]  M. Kanda,et al.  Standard antennas for electromagnetic interference measurements and methods to calibrate them , 1994 .

[52]  Christopher L. Holloway,et al.  Millimeter Wave Detection via Autler-Townes Splitting in Rubidium Rydberg Atoms , 2014, 1406.2936.

[53]  M. Hartmann,et al.  Light scattering by small particles. Von H. C. VANDE HULST. New York: Dover Publications, Inc. 1981. Paperback, 470 S., 103 Abb. und 46 Tab., US $ 7.50 , 1984 .

[54]  K. Jensen,et al.  Quantum noise limited and entanglement-assisted magnetometry , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[55]  J. Kitching,et al.  Atomic Sensors – A Review , 2011, IEEE Sensors Journal.

[56]  K. Overstreet,et al.  Cold Cs Rydberg-gas interactions , 2006 .

[57]  S. Saltiel,et al.  Resonant quenching of gas-phase Cs atoms induced by surface polaritons. , 2002, Physical review letters.

[58]  J. Shaffer Atom optics: Marriage of atoms and plasmons , 2011 .

[59]  F. Merkt,et al.  Using High Rydberg States as Electric Field Sensors , 1999 .

[60]  F. Jessen,et al.  Measurement of absolute transition frequencies of 87Rb nS and nD Rydberg states by means of electromagnetically induced transparency , 2011, 1103.6221.

[61]  K. J. Weatherill,et al.  Microwave dressing of Rydberg dark states , 2011, 1102.0226.

[62]  D Budker,et al.  Polarized alkali-metal vapor with minute-long transverse spin-relaxation time. , 2010, Physical review letters.

[63]  C. Adams,et al.  Electrometry near a dielectric surface using Rydberg electromagnetically induced transparency , 2011, 1106.3495.

[64]  Charles W. Clark,et al.  Determination of electric-dipole matrix elements in K and Rb from Stark shift measurements , 2007, 0709.0014.

[65]  R. J. C. Spreeuw,et al.  Spatially resolved excitation of Rydberg atoms and surface effects on an atom chip , 2010 .

[66]  Y. Rahmat-Samii,et al.  Phaseless Measurements Over Nonrectangular Planar Near-Field Systems Without Probe Corotation , 2013, IEEE Transactions on Antennas and Propagation.

[67]  Z. Gan,et al.  Study on triple-stack anodic bonding using two electrodes , 2010 .

[68]  M. Romalis,et al.  Tunable atomic magnetometer for detection of radio-frequency magnetic fields. , 2005, Physical review letters.

[69]  V.F. Fusco,et al.  Passive Intermodulation Generation on Printed Lines: Near-Field Probing and Observations , 2008, IEEE Transactions on Microwave Theory and Techniques.

[70]  M. Schnell,et al.  Atoms in micron-sized metallic and dielectric waveguides , 1997, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[71]  B. Gimeno,et al.  Experimental Analysis of Passive Intermodulation at Waveguide Flange Bolted Connections , 2007, IEEE Transactions on Microwave Theory and Techniques.

[72]  Gaetano Mileti,et al.  Imaging of Relaxation Times and Microwave Field Strength in a Microfabricated Vapor Cell , 2013, 1306.1387.

[73]  S. Sali,et al.  New possibilities for phaseless microwave diagnostics. Part1: Error reduction techniques , 1985 .

[74]  D. L. Misell Comment onA method for the solution of the phase problem in electron microscopy , 1973 .

[75]  C. Fabre,et al.  Rydberg-atom masers. II. Triggering by external radiation and application to millimeter-wave detectors , 1983 .

[76]  James C. Camparo,et al.  Precision measurements of absorption and refractive-index using an atomic candle , 2001, IEEE Trans. Instrum. Meas..

[77]  Motohisa Kanda,et al.  Generation of Standard Electromagnetic Fields in a TEM Cell | NIST , 1988 .

[78]  J. Shaffer,et al.  Atom-based vector microwave electrometry using rubidium Rydberg atoms in a vapor cell. , 2013, Physical review letters.

[79]  R. Löw,et al.  Strongly Correlated Growth of Rydberg Aggregates in a Vapor Cell. , 2014, Physical review letters.