Modelling radar backscatter from crops during the growth cycle

Ce papier decrit l'implementation d'un modele, base sur la theorie du transport radiatif, pour l'interpretation des donnees de retrodiffusion radar de la vegetation agricole (tournesol et ble) pendant le cycle de pousse. Le modele represente la vegetation comme un ensemble des disques casuellement orientes et des cylindres presque verticaux sur une surface rugueuse. Le modele a ete utilise pour simuler le cycle de croissance du ble et du tournesol utilisant comme donnees d'entree les donnees bio-physiques recueillies pendant une campagne intensive sur le site agricole du projet EC RESEDA. Une comparaison avec les donnees du coefficient de retrodiffusion radar collectes a deux frequences, deux polarisations et deux angles d'incidence par le satellite ERS/SAR et par un scatterometre francais (ERASME) installe sur un avion, a ete faite. Cette comparaison a indique que le modele reproduit assez bien les evolutions temporelles et les donnees moyennes des resultats experimentaux. En plus, le coefficient de retrodiffusion radar est sensible a la geometrie des plants de ble et de tournesol. Tandis que le LAI augmente, le coefficient de retrodiffusion radar augmente pour le tournesol et diminue pour le ble.

[1]  Urs Wegmüller,et al.  Signature research for crop classification by active and passive microwaves , 1993 .

[2]  Yisok Oh,et al.  Condition for precise measurement of soil surface roughness , 1998, IEEE Trans. Geosci. Remote. Sens..

[3]  Leung Tsang,et al.  Polarimetric Signatures of a Canopy of Dielectric Cylinders Based on First and Second Order Vector Radiative Transfer Theory , 1992 .

[4]  Kamal Sarabandi,et al.  A Monte Carlo coherent scattering model for forest canopies using fractal-generated trees , 1999, IEEE Trans. Geosci. Remote. Sens..

[5]  L. Tsang,et al.  Radiative transfer theory for active remote sensing of a layer of small ellipsoidal scatterers. [of vegetation] , 1981 .

[6]  Kamal Sarabandi,et al.  An empirical model and an inversion technique for radar scattering from bare soil surfaces , 1992, IEEE Trans. Geosci. Remote. Sens..

[7]  J. Kong,et al.  Theory of microwave remote sensing , 1985 .

[8]  M A Karam Bridging the quasi-static and the physical optics approximations: an elliptic disk case. , 1998, Applied optics.

[9]  A. Fung Microwave Scattering and Emission Models and their Applications , 1994 .

[10]  Simonetta Paloscia,et al.  The potential of multifrequency polarimetric SAR in assessing agricultural and arboreous biomass , 1997, IEEE Trans. Geosci. Remote. Sens..

[11]  M. A. Karam,et al.  Electromagnetic scattering from a layer of finite length, randomly oriented, dielectric, circular cylinders over a rough interface with application to vegetation , 1988 .

[12]  Kamal Sarabandi,et al.  Electromagnetic scattering model for a tree trunk above a tilted ground plane , 1995, IEEE Trans. Geosci. Remote. Sens..

[13]  M.A. Karam,et al.  Leaf-shape effects in electromagnetic wave scattering from vegetation , 1989, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Kamal Sarabandi,et al.  Michigan microwave canopy scattering model , 1990 .

[15]  David M. Le Vine,et al.  Discrete scatter model for microwave radar and radiometer response to corn: comparison of theory and data , 1994, IEEE Trans. Geosci. Remote. Sens..

[16]  Simonetta Paloscia,et al.  The potential of C- and L-band SAR in estimating vegetation biomass: the ERS-1 and JERS-1 experiments , 1999, IEEE Trans. Geosci. Remote. Sens..

[17]  P. Pampaloni,et al.  SAR polarimetric features of agricultural areas , 1993, Proceedings of IGARSS '93 - IEEE International Geoscience and Remote Sensing Symposium.