Enhancement of CO2/N2 selectivity in a metal-organic framework by cavity modification

Post-synthesis modification of a MOF by replacing coordinated solvent molecules with highly polar ligands leads to considerable enhancement of CO2/N2 selectivity.

[1]  F. Dreisbach,et al.  High Pressure Adsorption Data of Methane, Nitrogen, Carbon Dioxide and their Binary and Ternary Mixtures on Activated Carbon , 1999 .

[2]  Randall Q Snurr,et al.  Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks. , 2006, The journal of physical chemistry. B.

[3]  J. Long,et al.  Matrix isolation chemistry in a porous metal-organic framework: photochemical substitutions of N2 and H2 in Zn4O[(eta6-1,4-benzenedicarboxylate)Cr(CO)3]3. , 2008, Journal of the American Chemical Society.

[4]  S. Sandler,et al.  Storage and separation of CO2 and CH4 in silicalite, C168 schwarzite, and IRMOF-1: a comparative study from Monte Carlo simulation. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[5]  Alan L. Myers,et al.  Thermodynamics of mixed‐gas adsorption , 1965 .

[6]  Chongli Zhong,et al.  Molecular simulation of separation of CO2 from flue gases in CU‐BTC metal‐organic framework , 2007 .

[7]  Jinho Oh,et al.  A homochiral metal–organic porous material for enantioselective separation and catalysis , 2000, Nature.

[8]  Seth M. Cohen,et al.  Tandem modification of metal-organic frameworks by a postsynthetic approach. , 2008, Angewandte Chemie.

[9]  David S. Sholl,et al.  Atomistic Simulations of CO2 and N2 Adsorption in Silica Zeolites: The Impact of Pore Size and Shape† , 2002 .

[10]  J. Hupp,et al.  Alkali metal cation effects on hydrogen uptake and binding in metal-organic frameworks. , 2008, Inorganic chemistry.

[11]  Omar M. Yaghi,et al.  Metal-organic frameworks: a new class of porous materials , 2004 .

[12]  Chuan-De Wu,et al.  A homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis. , 2005, Journal of the American Chemical Society.

[13]  S. Bhatia,et al.  Determination of Pore Accessibility in Disordered Nanoporous Materials , 2007 .

[14]  G. Bennett,et al.  Adsorbents: Fundamentals and Applications , 2004 .

[15]  Ian D. Williams,et al.  A chemically functionalizable nanoporous material (Cu3(TMA)2(H2O)3)n , 1999 .

[16]  Chongli Zhong,et al.  Molecular simulation of carbon dioxide/methane/hydrogen mixture adsorption in metal-organic frameworks. , 2006, The journal of physical chemistry. B.

[17]  D. Lozano‐Castelló,et al.  Usefulness of CO2 adsorption at 273 K for the characterization of porous carbons , 2004 .

[18]  J. Hupp,et al.  An example of node-based postassembly elaboration of a hydrogen-sorbing, metal-organic framework material. , 2008, Inorganic chemistry.

[19]  R. Snurr,et al.  Assessment of Isoreticular Metal−Organic Frameworks for Adsorption Separations: A Molecular Simulation Study of Methane/n-Butane Mixtures , 2004 .

[20]  Patrick Ryan,et al.  Separation of CO2 from CH4 using mixed-ligand metal-organic frameworks. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[21]  Zhenqiang Wang,et al.  Postsynthetic covalent modification of a neutral metal-organic framework. , 2007, Journal of the American Chemical Society.

[22]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[23]  C. Serre,et al.  High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[24]  Seth M. Cohen,et al.  Systematic functionalization of a metal-organic framework via a postsynthetic modification approach. , 2008, Journal of the American Chemical Society.

[25]  Gérard Férey,et al.  Calculating Geometric Surface Areas as a Characterization Tool for Metal−Organic Frameworks , 2007 .

[26]  Xianshe Feng,et al.  CO2/N2 separation by poly(ether block amide) thin film hollow fiber composite membranes , 2005 .

[27]  F. Rodríguez-Reinoso,et al.  Use of nitrogen vs. carbon dioxide in the characterization of activated carbons , 1987 .

[28]  Randall Q. Snurr,et al.  Enhanced CO2 Adsorption in Metal-Organic Frameworks via Occupation of Open-Metal Sites by Coordinated Water Molecules , 2009 .

[29]  José A.C. Silva,et al.  A Microporous Metal−Organic Framework for Separation of CO2/N2 and CO2/CH4 by Fixed-Bed Adsorption , 2008 .

[30]  Joseph T Hupp,et al.  Chemical reduction of metal-organic framework materials as a method to enhance gas uptake and binding. , 2007, Journal of the American Chemical Society.

[31]  S. Nguyen,et al.  Prospects for nanoporous metal-organic materials in advanced separations processes , 2004 .

[32]  S. Hyun,et al.  Equilibrium and kinetic characteristics of five single gases in a methyltriethoxysilane-templating silica/α-alumina composite membrane , 2006 .

[33]  Chang-Ha Lee,et al.  Sorption kinetics of eight gases on a carbon molecular sieve at elevated pressure , 2005 .

[34]  J. Poston,et al.  Adsorption of CO2 on molecular sieves and activated carbon , 2001 .

[35]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[36]  David S. Sholl,et al.  Adsorption and separation of hydrogen isotopes in carbon nanotubes: Multicomponent grand canonical Monte Carlo simulations , 2002 .

[37]  C. Serre,et al.  Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. , 2005, Journal of the American Chemical Society.

[38]  U. Mueller,et al.  Metal–organic frameworks—prospective industrial applications , 2006 .

[39]  B. Smit,et al.  Enhanced adsorption selectivity of hydrogen/methane mixtures in metal-organic frameworks with interpenetration: A molecular simulation study , 2008 .

[40]  S. Nguyen,et al.  Ligand-elaboration as a strategy for engendering structural diversity in porous metal-organic framework compounds. , 2008, Chemical communications.