Mathematical Analysis on a Conforming Finite Element Scheme for Advection-Dispersion-Decay Equations on Connected Graphs

1Student Member of JSCE, Research Fellow of JSPS, PhD. Student, Graduate School of Agr., Kyoto University (Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto, 606-8502. Japan) E-mail:yoshih@kais.kyoto-u.ac.jp 2Associate Professor, Graduate School of Agr., Kyoto University (Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto, 606-8502. Japan) E-mail:unami@adm.kais.kyoto-u.ac.jp 3Member of JSCE, Professor, Graduate School of Agr., Kyoto University (Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto, 606-8502. Japan) E-mail:fujihara@kais.kyoto-u.ac.jp

[1]  J. Ramírez,et al.  Population persistence under advection–diffusion in river networks , 2011, Journal of mathematical biology.

[2]  Martin Stynes,et al.  Uniformly convergent difference schemes for singularly perturbed parabolic diffusion-convection problems without turning points , 1989 .

[3]  An analysis of a superconvergence result for a singularly perturbed boundary value problem , 1986 .

[5]  Bosco Garc'ia-Archilla Shishkin mesh simulation: A new stabilization technique for convection–diffusion problems , 2012, 1212.4321.

[6]  S. Salsa Partial Differential Equations in Action , 2015 .

[7]  P. Kuchment,et al.  Introduction to Quantum Graphs , 2012 .

[8]  Sabine Fenstermacher,et al.  Numerical Approximation Of Partial Differential Equations , 2016 .

[9]  Koichi Niijima,et al.  On a difference scheme of exponential type for a nonlinear singular perturbation problem , 1985 .

[10]  H. A. Basha,et al.  Eulerian–Lagrangian Method for Constituent Transport in Water Distribution Networks , 2007 .

[11]  Joannes J. Westerink,et al.  Consistent higher degree Petrov–Galerkin methods for the solution of the transient convection–diffusion equation , 1989 .

[12]  M. Stynes,et al.  Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems , 1996 .

[13]  O. Axelsson,et al.  Harmonic averages, exact difference schemes and local Green’s functions in variable coefficient PDE problems , 2013 .

[14]  M. H. Doweidar,et al.  COMBINING ADJOINT STABILIZED METHODS FOR THE ADVECTION-DIFFUSION-REACTION PROBLEM , 2007 .

[15]  H. Yoshioka,et al.  A cell-vertex finite volume scheme for solute transport equations in open channel networks , 2013 .

[16]  Miklós E. Mincsovics Discrete and continuous maximum principles for parabolic and elliptic operators , 2010, J. Comput. Appl. Math..

[17]  A. Vulpiani,et al.  Reaction spreading on graphs. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  H. Yoshioka,et al.  Stochastic process model for solute transport and the associated transport equation , 2012 .

[19]  Atul Kumar,et al.  Analytical solutions of one-dimensional advection-diffusion equation with variable coefficients in a finite domain , 2009 .

[20]  Sandra M. C. Malta,et al.  Avoiding spurious modes of time discretized operators in transport problems , 2010 .

[21]  Mario A. Storti,et al.  A Petrov-Galerkin formulation for advection-reaction-diffusion problems , 1996 .

[22]  Po-Wen Hsieh,et al.  Analysis of a new stabilized finite element method for the reaction–convection–diffusion equations with a large reaction coefficient , 2012 .

[23]  Yan Wang,et al.  A Coupled Water Quantity–Quality Model for Water Allocation Analysis , 2010 .

[24]  Mark Freidlin,et al.  Diffusion processes on graphs: stochastic differential equations, large deviation principle , 2000 .

[25]  Martin Stynes,et al.  Steady-state convection-diffusion problems , 2005, Acta Numerica.

[26]  S. Grant,et al.  Case Study: Modeling Tidal Transport of Urban Runoff in Channels Using the Finite-Volume Method , 2001 .

[27]  T. Kawachi,et al.  A hydro-environmental watershed model improved in canal-aquifer water exchange process , 2011, Paddy and Water Environment.

[28]  J. J. Miller,et al.  Fitted Numerical Methods for Singular Perturbation Problems , 1996 .

[29]  A new stabilized finite element method for reaction–diffusion problems: The source‐stabilized Petrov–Galerkin method , 2008 .

[30]  Achi Brandt,et al.  Inadequacy of first-order upwind difference schemes for some recirculating flows , 1991 .

[31]  Juan I. Ramos,et al.  On diffusive methods and exponentially fitted techniques , 1999, Appl. Math. Comput..

[32]  H. Yoshioka,et al.  Burgers type equation models on connected graphs and their application to open channel hydraulics (Mathematical Aspects and Applications of Nonlinear Wave Phenomena) , 2014 .

[33]  Carlos A. Henao,et al.  A stabilized method for transient transport equations , 2010 .

[34]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[35]  Kurt E Anderson,et al.  Population persistence in river networks , 2014, Journal of mathematical biology.

[36]  H. Yoshioka,et al.  A Conforming Finite Element Method for Non-conservative Advection-diffusion Equations on Connected Graphs , 2013 .

[37]  D. Noja Nonlinear Schrödinger equation on graphs: recent results and open problems , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[38]  Yintzer Shih,et al.  An exponential-fitting finite element method for convection-diffusion problems , 2011, Appl. Math. Comput..

[39]  G. Smith,et al.  Numerical Solution of Partial Differential Equations: Finite Difference Methods , 1978 .

[40]  H. Yoshioka,et al.  Internal Boundary Conditions for Solute Transport Equations in Locally One-dimensional Open Channel Networks , 2013 .

[41]  Marcelo Horacio Garcia,et al.  Three-dimensional hydrodynamic modeling of the Chicago River, Illinois , 2012, Environmental Fluid Mechanics.

[42]  K. Atkinson,et al.  Theoretical Numerical Analysis: A Functional Analysis Framework , 2001 .