Transition metal oxide-carbon composites as conversion anodes for sodium-ion battery

[1]  B. Scrosati,et al.  A lithium ion battery exploiting a composite Fe2O3 anode and a high voltage Li1.35Ni0.48Fe0.1Mn1.72O4 cathode , 2014 .

[2]  Zongping Shao,et al.  Effect of milling method and time on the properties and electrochemical performance of LiFePO4/C composites prepared by ball milling and thermal treatment , 2010 .

[3]  J. Tarascon,et al.  Decomposition of ethylene carbonate on electrodeposited metal thin film anode , 2010 .

[4]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[5]  Clement Bommier,et al.  Recent Development on Anodes for Na‐Ion Batteries , 2015 .

[6]  Philippe Moreau,et al.  Structure and Stability of Sodium Intercalated Phases in Olivine FePO4 , 2010 .

[7]  B. Toby R factors in Rietveld analysis: How good is good enough? , 2006, Powder Diffraction.

[8]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[9]  Yang‐Kook Sun,et al.  Lithium-ion batteries. A look into the future , 2011 .

[10]  Jun Chen,et al.  Porous CuO nanowires as the anode of rechargeable Na-ion batteries , 2014, Nano Research.

[11]  D. Stevens,et al.  High Capacity Anode Materials for Rechargeable Sodium‐Ion Batteries , 2000 .

[12]  Teófilo Rojo,et al.  A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries , 2015 .

[13]  D. Stevens,et al.  An In Situ Small‐Angle X‐Ray Scattering Study of Sodium Insertion into a Nanoporous Carbon Anode Material within an Operating Electrochemical Cell , 2000 .

[14]  K. Abraham Intercalation positive electrodes for rechargeable sodium cells , 1982 .

[15]  Christian Masquelier,et al.  Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. , 2013, Chemical reviews.

[16]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[17]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[18]  J. Cabana,et al.  Electroanalytical study of the viability of conversion reactions as energy storage mechanisms , 2014 .

[19]  Yang-Kook Sun,et al.  Challenges facing lithium batteries and electrical double-layer capacitors. , 2012, Angewandte Chemie.

[20]  Kazuma Gotoh,et al.  Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐Carbon Electrodes and Application to Na‐Ion Batteries , 2011 .

[21]  J. Tarascon,et al.  A Transmission Electron Microscopy Study of the Reactivity Mechanism of Tailor-Made CuO Particles toward Lithium , 2001 .

[22]  Fredrik J. Lindgren,et al.  Towards more sustainable negative electrodes in Na-ion batteries via nanostructured iron oxide , 2014 .

[23]  Bruno Scrosati,et al.  A new, high performance CuO/LiNi0.5Mn1.5O4 lithium-ion battery , 2013 .

[24]  J. Owen,et al.  Evaluation of Cu3N and CuO as Negative Electrode Materials for Sodium Batteries , 2014 .

[25]  Shuang Yuan,et al.  Engraving Copper Foil to Give Large‐Scale Binder‐Free Porous CuO Arrays for a High‐Performance Sodium‐Ion Battery Anode , 2014, Advanced materials.

[26]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[27]  Jusef Hassoun,et al.  A comparative study of layered transition metal oxide cathodes for application in sodium-ion battery. , 2015, ACS applied materials & interfaces.

[28]  J. Hassoun,et al.  High‐Capacity NiO–(Mesocarbon Microbeads) Conversion Anode for Lithium‐Ion Battery , 2015 .

[29]  Philipp Adelhelm,et al.  Conversion reactions for sodium-ion batteries. , 2013, Physical chemistry chemical physics : PCCP.