The Gaia-ESO Survey: properties of newly discovered Li-rich giants

Aims. We report 20 new lithium-rich giants discovered within the Gaia-ESO Survey, including the first Li-rich giant with an evolutionary stage confirmed by CoRoT (Convection, Rotation and planetary Transits) data. We present a detailed overview of the properties of these 20 stars. Methods. Atmospheric parameters and abundances were derived in model atmosphere analyses using medium-resolution GIRAFFE or high-resolution UVES (Ultraviolet and Visual Echelle Spectrograph) spectra. These results are part of the fifth internal data release of the Gaia-ESO Survey. The Li abundances were corrected for non-local thermodynamical equilibrium effects. Other stellar properties were investigated for additional peculiarities (the core of strong lines for signs of magnetic activity, infrared magnitudes, rotational velocities, chemical abundances, and Galactic velocities). We used Gaia DR2 parallaxes to estimate distances and luminosities. Results. The giants have A(Li) > 2.2 dex. The majority of them (14 of 20 stars) are in the CoRoT fields. Four giants are located in the field of three open clusters, but are not members. Two giants were observed in fields towards the Galactic bulge, but likely lie in the inner disc. One of the bulge field giants is super Li-rich with A(Li) = 4.0 dex. Conclusions. We identified one giant with infrared excess at 22 μm. Two other giants, with large v sin i, might be Li-rich because of planet engulfment. Another giant is found to be barium enhanced and thus could have accreted material from a former asymptotic giant branch companion. Otherwise, in addition to the Li enrichment, the evolutionary stages are the only other connection between these new Li-rich giants. The CoRoT data confirm that one Li-rich giant is at the core-He burning stage. The other giants are concentrated in close proximity to the red giant branch luminosity bump, the core-He burning stages, or the early-asymptotic giant branch. This is very clear from the Gaia-based luminosities of the Li-rich giants. This is also seen when the CoRoT Li-rich giants are compared to a larger sample of 2252 giants observed in the CoRoT fields by the Gaia-ESO Survey, which are distributed throughout the red giant branch in the Teff-log g diagram. These observations show that the evolutionary stage is a major factor for the Li enrichment in giants. Other processes, such as planet accretion, contribute at a smaller scale.

[1]  L. Szabados,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[2]  A. Jorissen,et al.  Hertzsprung-Russell diagram and mass distribution of barium stars (Corrigendum) , 2017, Astronomy & Astrophysics.

[3]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: the origin and evolution of s-process elements , 2018, Astronomy & Astrophysics.

[4]  B. E. Reddy,et al.  Two New Super Li-rich Core He-burning Giants: A New Twist to the Long Tale of Li Enhancement in K Giants , 2018, 1804.10955.

[5]  P. J. Richards,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[6]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[7]  R. Peralta,et al.  A new method for extracting seismic indices and granulation parameters: results for more than 20,000 CoRoT and Kepler red giants , 2018, 1805.04296.

[8]  L. Girardi,et al.  New parsec data base of α-enhanced stellar evolutionary tracks and isochrones – I. Calibration with 47 Tuc (NGC 104) and the improvement on RGB bump , 2018, 1801.07137.

[9]  C. Prieto,et al.  12C/13C isotopic ratios in red-giant stars of the open cluster NGC 6791 , 2017, 1711.08183.

[10]  Y. B. Kumar,et al.  Enormous Li Enhancement Preceding Red Giant Phases in Low-mass Stars in the Milky Way Halo , 2017, 1801.00090.

[11]  T. Granzer,et al.  Antisolar differential rotation with surface lithium enrichment on the single K-giant V1192 Orionis , 2017, 1708.01577.

[12]  W. Chaplin,et al.  NGC 6819: testing the asteroseismic mass scale, mass loss, and evidence for products of non-standard evolution , 2017, 1707.08223.

[13]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: double, triple and quadruple-line spectroscopic binary candidates , 2017, 1707.01720.

[14]  S. Hekker,et al.  A Unified tool to estimate Distances, Ages and Masses (UniDAM) from spectrophotometric data , 2017, 1705.00963.

[15]  C. Gonz'alez-Fern'andez,et al.  NGC 6067: a young and massive open cluster with high metallicity , 2017, 1704.01548.

[16]  A. Bragaglia,et al.  The Gaia-ESO Survey: radial distribution of abundances in the Galactic disc from open clusters and young-field stars , 2017, 1703.00762.

[17]  A. Klutsch,et al.  The Gaia-ESO Survey: The present-day radial metallicity distribution of the Galactic disc probed by pre-main-sequence clusters , 2017, 1702.03461.

[18]  H. R. Coelho,et al.  Determining stellar parameters of asteroseismic targets: going beyond the use of scaling relations , 2017, 1701.04791.

[19]  L. Testi,et al.  X-shooter spectroscopy of young stellar objects in Lupus. Accretion properties of class II and transitional objects , 2016, 1612.07054.

[20]  S. Basu,et al.  A new method for the asteroseismic determination of the evolutionary state of red-giant stars , 2016, 1612.04751.

[21]  E. Pancino,et al.  The gaia -ESO survey : Calibration strategy , 2016, 1610.06480.

[22]  S. Randich,et al.  CNO abundances and carbon isotope ratios in evolved stars of the open clusters NGC 2324, NGC 2477, and NGC 3960 , 2016, 1608.08398.

[23]  G. Tautvaišienė,et al.  Chemical composition of evolved stars in the young open clusters NGC 4609 and NGC 5316 , 2016, 1608.08375.

[24]  L. S. Lyubimkov Lithium in Stellar Atmospheres: Observations and Theory , 2016, 1701.05720.

[25]  K. Cunha,et al.  LITHIUM INVENTORY OF 2 M⊙ RED CLUMP STARS IN OPEN CLUSTERS: A TEST OF THE HELIUM FLASH MECHANISM , 2016, 1608.01678.

[26]  G. Meynet,et al.  Star-planet interactions: II. Is planet engulfment the origin of fast rotating red giants? , 2016, 1606.08027.

[27]  M. Pinsonneault,et al.  ON LITHIUM-RICH RED GIANTS. I. ENGULFMENT OF SUBSTELLAR COMPANIONS , 2016, 1605.05332.

[28]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: Inhibited extra mixing in two giants of the open cluster Trumpler 20? , 2016, 1605.01945.

[29]  G. Meynet,et al.  Star-planet interactions: I. Stellar rotation and planetary orbits , 2016, 1604.06005.

[30]  F. Roig,et al.  Chemical abundances and kinematics of barium stars , 2016, 1604.03031.

[31]  S. Randich,et al.  The extent of mixing in stellar interiors: the open clusters Collinder 261 and Melotte 66 , 2016, 1603.09529.

[32]  The University of Texas at Austin,et al.  HD 16771: A lithium-rich giant in the red-clump stage , 2016, 1603.05309.

[33]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: revisiting the Li-rich giant problem , 2016, 1603.03038.

[34]  F. Grundahl,et al.  Atomic diffusion and mixing in old stars VI: The lithium content of M30 , 2016, 1603.01565.

[35]  K. Cunha,et al.  LITHIUM-RICH GIANTS IN GLOBULAR CLUSTERS , 2016, 1601.01315.

[36]  K. Cunha,et al.  LITHIUM IN OPEN CLUSTER RED GIANTS HOSTING SUBSTELLAR COMPANIONS , 2015, 1512.08558.

[37]  M. Tsantaki,et al.  Searching for Li-rich giants in a sample of 12 open clusters: Li enhancement in two stars with substellar companions , 2015, 1512.05296.

[38]  A. Pietrinferni,et al.  The red giant branch phase transition: Implications for the RGB luminosity function bump and detections of Li-rich red clump stars , 2015, 1510.07870.

[39]  R. Petrucci,et al.  KIC 9821622: An interesting lithium-rich giant in the Kepler field , 2015, 1510.07192.

[40]  J. Carlberg,et al.  ON INFRARED EXCESSES ASSOCIATED WITH Li-RICH K GIANTS , 2015, 1507.00708.

[41]  C. Babusiaux,et al.  TheGaia-ESO Survey: Empirical determination of the precision of stellar radial velocities and projected rotation velocities , 2015, Astronomy & Astrophysics.

[42]  H. Wickham Simple, Consistent Wrappers for Common String Operations , 2015 .

[43]  M. Asplund,et al.  Atomic and molecular data for optical stellar spectroscopy , 2015, 1506.06697.

[44]  R. Reza,et al.  COMPLEX ORGANIC AND INORGANIC COMPOUNDS IN SHELLS OF LITHIUM-RICH K GIANT STARS , 2015, 1504.05983.

[45]  B. E. Reddy,et al.  Far-infrared study of K giants in the solar neighborhood: Connection between Li enrichment and mass-loss , 2015, 1503.01548.

[46]  C. Prieto,et al.  THE PUZZLING Li-RICH RED GIANT ASSOCIATED WITH NGC 6819 , 2015, 1501.05625.

[47]  C. Babusiaux,et al.  Gaia-ESO Survey: Analysis of pre-main sequence stellar spectra , 2015, 1501.04450.

[48]  C. Sneden,et al.  The chemical compositions and evolutionary status of red giants in the open cluster NGC 752 , 2014, 1411.7608.

[49]  G. Carraro,et al.  The Gaia-ESO Survey: CNO abundances in the open clusters Trumpler 20, NGC 4815, and NGC 6705 , 2014, 1411.2831.

[50]  T. Lumley,et al.  gplots: Various R Programming Tools for Plotting Data , 2015 .

[51]  L. Pasquini,et al.  The Gaia-ESO Survey: the analysis of high-resolution UVES spectra of FGK-type stars , 2014, 1409.0568.

[52]  C. Prieto,et al.  The Gaia-ESO Survey: the chemical structure of the Galactic discs from the first internal data release ?;?? , 2014, 1408.6687.

[53]  T. Granzer,et al.  Possible joint origin of differential rotation and Li enrichment , 2014, 1408.6106.

[54]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: the Galactic thick to thin disc transition , 2014, 1403.7568.

[55]  G. Carraro,et al.  A super lithium-rich red-clump star in the open cluster Trumpler 5 , 2014, 1403.6461.

[56]  C. Babusiaux,et al.  The Gaia-ESO Survey: processing FLAMES-UVES spectra , 2014 .

[57]  J. De Ridder,et al.  OLD PUZZLE, NEW INSIGHTS: A LITHIUM-RICH GIANT QUIETLY BURNING HELIUM IN ITS CORE , 2014, 1402.6339.

[58]  P. Bonifacio,et al.  The Be-test in the Li-rich star #1657 of NGC 6397: evidence for Li-flash in RGB stars? , 2014, 1401.7945.

[59]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[60]  S. C. Maciel,et al.  Overview of semi-sinusoidal stellar variability with the CoRoT satellite , 2013, 1305.0811.

[61]  B. Anthony-Twarog,et al.  A LITHIUM-RICH RED GIANT BELOW THE CLUMP IN THE KEPLER CLUSTER, NGC 6819 , 2013, 1303.2984.

[62]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[63]  C. Chiappini,et al.  Differential population studies using asteroseismology: Solar-like oscillating giants in CoRoT fields LRc01 and LRa01 , 2013, 1301.1515.

[64]  H. Korhonen,et al.  Doppler imaging of stellar surface structure - XXIV. The lithium-rich single K-giants DP Canum Venaticorum and DI Piscium , 2013, 1301.0445.

[65]  S. Martell,et al.  Lithium-rich field giants in the Sloan Digital Sky Survey , 2013, 1301.0163.

[66]  Andrew Gould,et al.  REDDENING AND EXTINCTION TOWARD THE GALACTIC BULGE FROM OGLE-III: THE INNER MILKY WAY'S RV ∼ 2.5 EXTINCTION CURVE , 2012, 1208.1263.

[67]  L. Girardi,et al.  parsec: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code , 2012, 1208.4498.

[68]  B. Barbuy,et al.  Milky Way demographics with the VVV survey - I. The 84-million star colour–magnitude diagram of the Galactic bulge , 2012, 1208.5178.

[69]  S. Ekstrom,et al.  Thermohaline instability and rotation-induced mixing - III. Grid of stellar models and asymptotic asteroseismic quantities from the pre-main sequence up to the AGB for low- and intermediate-mass stars of various metallicities , 2012, 1204.5193.

[70]  Sergio Ortolani,et al.  The Gaia-ESO Public Spectroscopic Survey , 2012 .

[71]  R. de Grijs,et al.  Vvv dr1: the first data release of the milky way bulge and southern plane from the near-infrared eso public survey vista variables in the via lactea , 2011, 1111.5511.

[72]  V. Adibekyan,et al.  A new α-enhanced super-solar metallicity population , 2011, 1111.4936.

[73]  A. Krone-Martins,et al.  Proper motion and densification of the International Celestial Reference Frame in the direction of the Galactic bulge , 2011 .

[74]  M. Pinsonneault,et al.  Asteroseismology of old open clusters with Kepler: direct estimate of the integrated red giant branch mass-loss in NGC 6791 and 6819 , 2011, 1109.4376.

[75]  R. Rich,et al.  DISCOVERY OF A SUPER-Li-RICH TURNOFF STAR IN THE METAL-POOR GLOBULAR CLUSTER NGC 6397 , 2011, 1108.2033.

[76]  S. Cristallo,et al.  DEEP MIXING IN EVOLVED STARS. II. INTERPRETING Li ABUNDANCES IN RED GIANT BRANCH AND ASYMPTOTIC GIANT BRANCH STARS , 2011, 1107.2844.

[77]  F. Grundahl,et al.  AN ASTEROSEISMIC MEMBERSHIP STUDY OF THE RED GIANTS IN THREE OPEN CLUSTERS OBSERVED BY KEPLER: NGC 6791, NGC 6819, AND NGC 6811 , 2011, 1107.1234.

[78]  K. Biazzo,et al.  IRAS12556-7731: a "chamaeleonic" lithium-rich M-giant , 2011, 1106.3471.

[79]  J. De Ridder,et al.  Mixed modes in red-giant stars observed with CoRoT , 2011, 1105.6113.

[80]  Conny Aerts,et al.  Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars , 2011, Nature.

[81]  Brno,et al.  Lithium-rich giants in the Galactic thick disk , 2011, 1103.1658.

[82]  B. E. Reddy,et al.  ORIGIN OF LITHIUM ENRICHMENT IN K GIANTS , 2011, 1102.2299.

[83]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[84]  Howard Isaacson,et al.  Kepler Planet-Detection Mission: Introduction and First Results , 2010, Science.

[85]  M. Asplund,et al.  Chemical similarities between Galactic bulge and local thick disk red giants: O, Na, Mg, Al, Si, Ca, and Ti , 2010, 1001.2521.

[86]  P. Quirion,et al.  Determining global parameters of the oscillations of solar-like stars , 2009, 0912.3367.

[87]  P. Quirion,et al.  The Octave (Birmingham-Sheffield Hallam) automated pipeline for extracting oscillation parameters of solar-like main-sequence stars , 2009, 0911.2612.

[88]  B. Mosser,et al.  On detecting the large separation in the autocorrelation of stellar oscillation times series , 2009, 0909.0782.

[89]  E. Observatory,et al.  A Spectroscopic Survey of the Youngest Field Stars in the Solar Neighborhood. II. The optically faint sample , 2018, 1801.00671.

[90]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[91]  S. Majewski,et al.  THE ROLE OF PLANET ACCRETION IN CREATING THE NEXT GENERATION OF RED GIANT RAPID ROTATORS , 2009, 0906.1587.

[92]  M. Asplund,et al.  Departures from LTE for neutral Li in late-type stars , 2009, 0906.0899.

[93]  M. Auvergne,et al.  The CoRoT satellite in flight : description and performance , 2009, 0901.2206.

[94]  Kjell Eriksson,et al.  A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties , 2008, 0805.0554.

[95]  Dana I. Casetti-Dinescu,et al.  Proper Motions in the Galactic Bulge: Plaut’s Window , 2007, Proceedings of the International Astronomical Union.

[96]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[97]  B. Smalley,et al.  Beryllium Enhancement as Evidence for Accretion in a Lithium-Rich F Dwarf , 2005, astro-ph/0508125.

[98]  N. Santos,et al.  On the nature of lithium-rich giant stars. Constraints from beryllium abundances , 2005, astro-ph/0504133.

[99]  M. Asplund,et al.  The Solar Chemical Composition , 2004, astro-ph/0410214.

[100]  T. Sumi Extinction map of the Galactic centre: OGLE‐II Galactic bulge fields , 2003, astro-ph/0309206.

[101]  D. Lambert,et al.  Rapidly Rotating Lithium-rich K Giants: The New Case of the Giant PDS 365 , 2002, astro-ph/0202158.

[102]  C. Charbonnel,et al.  The Lithium Flash - Thermal instabilities generated by lithium burning in RGB stars , 2001 .

[103]  J. Carpenter Color Transformations for the 2MASS Second Incremental Data Release , 2001, astro-ph/0101463.

[104]  C. Sneden,et al.  A Survey for Enhanced Lithium in 261 Globular Cluster Giants , 2000 .

[105]  F. Ochsenbein,et al.  The VizieR database of astronomical catalogues , 2000, astro-ph/0002122.

[106]  Johns Hopkins University,et al.  Improved Color-Temperature Relations and Bolometric Corrections for Cool Stars , 1999, astro-ph/9911367.

[107]  M. Livio,et al.  The accretion of brown dwarfs and planets by giant stars — II. Solar-mass stars on the red giant branch , 1999, astro-ph/9905235.

[108]  N. Grevesse,et al.  Standard Solar Composition , 1998 .

[109]  B. Barbuy,et al.  Li-rich giants: A survey based on IRAS colours , 1998 .

[110]  R. Jeffries Membership and lithium abundances of late-type stars in NGC 6633 , 1997 .

[111]  J. Binney,et al.  Local stellar kinematics from Hipparcos data , 1997, astro-ph/9710077.

[112]  E. Martín,et al.  On a Rapid Lithium Enrichment and Depletion of K Giant Stars , 1997, astro-ph/9703131.

[113]  N. Drake,et al.  Lithium Enrichment-Mass-Loss Connection in K Giant Stars , 1996 .

[114]  A. I. Boothroyd,et al.  Creation of 7Li and Destruction of 3He, 9Be, 10B, and 11B in Low-Mass Red Giants, Due to Deep Circulation , 1995, astro-ph/9512122.

[115]  V. Smith,et al.  LITHIUM IN THE BARIUM STARS , 1993 .

[116]  R. Kurucz ATLAS9 Stellar Atmosphere Programs and 2 km/s grid. , 1993 .

[117]  Timothy M. Brown,et al.  Detection of possible p-mode oscillations on Procyon , 1991 .

[118]  David R. Soderblom,et al.  Calculating Galactic Space Velocities and Their Uncertainties, with an Application to the Ursa Major Group , 1987 .

[119]  C. Sneden,et al.  A Search for Lithium-rich Giant Stars , 1984 .

[120]  G. Neugebauer,et al.  Infrared standard stars , 1982 .

[121]  C. Sneden,et al.  A K giant with an unusually high abundance of lithium - HD 112127 , 1982 .

[122]  J. Scalo,et al.  Studies of evolved stars. V. Nucleosynthesis in hot-bottom convective envelopes , 1975 .

[123]  A. G. W. Cameron,et al.  Lithium and the s-process in red-giant stars , 1971 .