A unified formulation of small-strain corotational finite elements: I. Theory

This paper presents a unified theoretical framework for the corotational (CR) formulation of finite elements in geometrically nonlinear structural analysis. The key assumptions behind CR are: (i) strains from a corotated configuration are small while (ii) the magnitude of rotations from a base configuration is not restricted. Following a historical outline the basic steps of the element independent CR formulation are presented. The element internal force and consistent tangent stiffness matrix are derived by taking variations of the internal energy with respect to nodal freedoms. It is shown that this framework permits the derivation of a set of CR variants through selective simplifications. This set includes some previously used by other investigators. The different variants are compared with respect to a set of desirable qualities, including self-equilibrium in the deformed configuration, tangent stiffness consistency, invariance, symmetrizability, and element independence. We discuss the main benefits of the CR formulation as well as its modeling limitations.

[1]  Gregory W. Brown,et al.  Application of a three-field nonlinear fluid–structure formulation to the prediction of the aeroelastic parameters of an F-16 fighter , 2003 .

[2]  Carlos A. Felippa,et al.  Membrane triangles with corner drilling freedoms III: implementation and performance evaluation , 1992 .

[3]  K. C. Valanis,et al.  A theory of viscoplasticity without a yield surface , 1970 .

[4]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[5]  K. Bathe,et al.  FINITE ELEMENT FORMULATIONS FOR LARGE DEFORMATION DYNAMIC ANALYSIS , 1975 .

[6]  Oi Sivertsen,et al.  Virtual Testing of Mechanical Systems: Theories and Techniques. Advances in Engineering, Vol 4 , 2002 .

[7]  D. A. Danielson,et al.  Nonlinear Shell Theory With Finite Rotation and Stress-Function Vectors , 1972 .

[8]  K. C. Gupta,et al.  An historical note on finite rotations , 1989 .

[9]  K. Bathe,et al.  Finite Element Methods for Nonlinear Problems , 1986 .

[10]  Gary R. Consolazio,et al.  Finite Elements , 2007, Handbook of Dynamic System Modeling.

[11]  Richard Bellman,et al.  Introduction to Matrix Analysis , 1972 .

[12]  Carlos A. Felippa,et al.  The first ANDES elements: 9-dof plate bending triangles , 1991 .

[13]  R. C. Kar Stability of a nonuniform cantilever subjected to dissipative and nonconservative forces , 1980 .

[14]  C. Pacoste,et al.  Co-rotational beam elements with warping effects in instability problems , 2002 .

[15]  P. Bergan,et al.  Finite elements with increased freedom in choosing shape functions , 1984 .

[16]  C. C. Rankin,et al.  Consistent linearization of the element-independent corotational formulation for the structural analysis of general shells , 1988 .

[17]  C. Rankin,et al.  Finite rotation analysis and consistent linearization using projectors , 1991 .

[18]  Geir Horrigmoe,et al.  Finite element instability analysis of free-form shells , 1977 .

[19]  M. Szwabowicz,et al.  Variational formulation in the geometrically nonlinear thin elastic shell theory , 1986 .

[20]  Carlos A. Felippa,et al.  A triangular membrane element with rotational degrees of freedom , 1985 .

[21]  K. Park,et al.  A Curved C0 Shell Element Based on Assumed Natural-Coordinate Strains , 1986 .

[22]  Bjørn Skallerud,et al.  Collapse of thin shell structures—stress resultant plasticity modelling within a co-rotated ANDES finite element formulation , 1999 .

[23]  M. A. Crisfield,et al.  A unified co-rotational framework for solids, shells and beams , 1996 .

[24]  Carlos A. Felippa,et al.  Membrane triangles with corner drilling freedoms II: the ANDES element , 1992 .

[25]  K. Mattiasson,et al.  On the Accuracy and Efficiency of Numerical Algorithms for Geometrically Nonlinear Structural Analysis , 1986 .

[26]  P. G. Bergan,et al.  Nonlinear analysis of free-form shells by flat finite elements , 1978 .

[27]  P. Bergan,et al.  Nonlinear Shell Analysis Using Free Formulation Finite Elements , 1986 .

[28]  J. C. Simo,et al.  A finite strain beam formulation. The three-dimensional dynamic problem. Part I , 1985 .

[29]  Jan Gunnar Teigen NONLINEAR ANALYSIS OF CONCRETE STRUCTURES BASED ON A 3D SHEAR-BEAM ELEMENT FORMULATION , 1994 .

[30]  J. C. Simo,et al.  A three-dimensional finite-strain rod model. Part II: Computational aspects , 1986 .

[31]  C. Rankin,et al.  THE USE OF PROJECTORS TO IMPROVE FINITE ELEMENT PERFORMANCE , 1988 .

[32]  K. Valanis A Theory of Viscoplasticity with a Yield Surface. Part 2. Application to Mechanical Behavior of Metals , 1971 .

[33]  P. Wriggers Nonlinear finite element analysis of solids and structures , 1998 .

[34]  J. Whiteman The Mathematics of Finite Elements and Applications. , 1983 .

[35]  M. G. Salvadori,et al.  Numerical methods in engineering , 1955 .

[36]  B. D. Veubeke,et al.  The dynamics of flexible bodies , 1976 .

[37]  H. Saunders,et al.  Finite element procedures in engineering analysis , 1982 .

[38]  Gerald Wempner,et al.  Finite elements, finite rotations and small strains of flexible shells , 1969 .

[39]  J. W. Humberston Classical mechanics , 1980, Nature.

[40]  Jean-Baptiste Lully,et al.  The collected works , 1996 .

[41]  J. Tinsley Oden,et al.  State-Of-The-Art Surveys on Computational Mechanics , 1989 .

[42]  C. Rankin,et al.  An element independent corotational procedure for the treatment of large rotations , 1986 .

[43]  W. Pietraszkiewicz Finite Rotations in Structural Mechanics , 1986 .

[44]  B. J. Hsieh,et al.  Non-Linear Transient Finite Element Analysis with Convected Co--ordinates , 1973 .

[45]  D. C. Drucker,et al.  Mechanics of Incremental Deformation , 1965 .

[46]  T. Hughes,et al.  Finite rotation effects in numerical integration of rate constitutive equations arising in large‐deformation analysis , 1980 .

[47]  M. L. Bucalem,et al.  Finite element analysis of shell structures , 1997 .

[48]  H. W. Turnbull,et al.  The Theory of Determinants. Matrices, and Invariants , 1929 .

[49]  T. Belytschko,et al.  Applications of higher order corotational stretch theories to nonlinear finite element analysis , 1979 .

[50]  J. Argyris An excursion into large rotations , 1982 .

[51]  M. De Handbuch der Physik , 1957 .

[52]  M. Crisfield A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements , 1990 .

[53]  C. Felippa A study of optimal membrane triangles with drilling freedoms , 2003 .

[54]  Jean-Marc Battini,et al.  Plastic instability of beam structures using co-rotational elements , 2002 .

[55]  C. Pacoste Co-rotational flat facet triangular elements for shell instability analyses , 1998 .

[56]  B. Irons,et al.  Techniques of Finite Elements , 1979 .

[57]  C. Felippa Recent advances in finite element templates , 2000 .

[58]  G. Karami Lecture Notes in Engineering , 1989 .

[59]  David W. Murray,et al.  Nonlinear Finite Element Analysis of Steel Frames , 1983 .

[60]  Carlos A. Felippa,et al.  The construction of free–free flexibility matrices for multilevel structural analysis , 2002 .

[61]  P. G. Bergan,et al.  Incremental variational principles and finite element models for nonlinear problems , 1976 .

[62]  M. Hamermesh Group theory and its application to physical problems , 1962 .

[63]  T. Belytschko,et al.  Computational Methods for Transient Analysis , 1985 .

[64]  P. G. Bergan,et al.  Finite elements based on energy orthogonal functions , 1980 .

[65]  T. B.,et al.  The Theory of Determinants , 1904, Nature.

[66]  F. R. Gantmakher The Theory of Matrices , 1984 .

[67]  Matteo Chiesa,et al.  Closed form line spring yield surfaces for deep and shallow cracks: formulation and numerical performance , 2002 .

[68]  R. A. Spurrier Comment on " Singularity-Free Extraction of a Quaternion from a Direction-Cosine Matrix" , 1978 .

[69]  Bjørn Skallerud,et al.  Thin shell and surface crack finite elements for simulation of combined failure modes , 2005 .

[70]  Clifford Ambrose Truesdell,et al.  The mechanical foundations of elasticity and fluid dynamics , 1952 .

[71]  Alston S. Householder,et al.  The Theory of Matrices in Numerical Analysis , 1964 .

[72]  Thomas J. R. Hughes,et al.  Nonlinear finite element analysis of shells: Part I. three-dimensional shells , 1981 .

[73]  L. M. M.-T. The Theory of Determinants, Matrices and Invariants , 1929, Nature.

[74]  Mario Bunge,et al.  Classical Field Theories , 1967 .

[75]  L. Mirsky,et al.  The Theory of Matrices , 1961, The Mathematical Gazette.

[76]  C. Truesdell,et al.  The Nonlinear Field Theories in Mechanics , 1968 .

[77]  Curtiss,et al.  Dynamics of Polymeric Liquids , .