MPC FOR TRACKING OF PIECE-WISE CONSTANT REFERENCES FOR CONSTRAINED LINEAR SYSTEMS

Abstract Model predictive control (MPC) is one of the few techniques which is able to handle with constraints on both state and input of the plant. The admissible evolution and asymptotically convergence of the closed loop system is ensured by means of a suitable choice of the terminal cost and terminal contraint. However, most of the existing results on MPC are designed for a regulation problem. If the desired steady state changes, the MPC controller must be redesigned to guarantee the feasibility of the optimization problem, the admissible evolution as well as the asymptotic stability. In this paper a novel formulation of the MPC is proposed to track varying references. This controller ensures the feasibility of the optimization problem, constraint satisfaction and asymptotic evolution of the system to any admissible steady-state. Hence, the proposed MPC controller ensures the offset free tracking of any sequence of piece-wise constant admissible set points. Moreover this controller requires the solution of a single QP at each sample time, it is not a switching controller and improves the performance of the closed loop system.