The Herschel* PEP/HerMES luminosity function - I. Probing the evolution of PACS selected Galaxies to z ≃ 4

We exploit the deep and extended far-IR data sets (at 70, 100 and 160 mu m) of the Herschel Guaranteed Time Observation (GTO) PACS Evolutionary Probe (PEP) Survey, in combination with the Herschel Multi-tiered Extragalactic Survey data at 250, 350 and 500 mu m, to derive the evolution of the rest-frame 35-, 60-, 90-and total infrared (IR) luminosity functions (LFs) up to z similar to 4. We detect very strong luminosity evolution for the total IR LF (L-IR alpha (1 + z)(3.55 +/- 0.10) up to z similar to 2, and. (1 + z) 1.62 similar to 0.51 at 2 \textless z less than or similar to 4) combined with a density evolution ( (1 + z)-0.57 +/- 0.22 up to z similar to 1 and. (1 + z)-3.92 +/- 0.34 at 1 \textless z less than or similar to 4). In agreement with previous findings, the IR luminosity density (.IR) increases steeply to z similar to 1, then flattens between z similar to 1 and z similar to 3 to decrease at z similar to 3. Galaxies with different spectral energy distributions, masses and specific star formation rates (SFRs) evolve in very different ways and this large and deep statistical sample is the first one allowing us to separately study the different evolutionary behaviours of the individual IR populations contributing to.IR. Galaxies occupying the well-established SFR-stellar mass main sequence (MS) are found to dominate both the total IR LF and.IR at all redshifts, with the contribution from off-MS sources (= 0.6 dex above MS) being nearly constant (similar to 20 per cent of the total IR) and showing no significant signs of increase with increasing z over the whole 0.8 \textless z \textless 2.2 range. Sources with mass in the range 10 = log(M/M-circle dot) = 11 are found to dominate the total IR LF, with more massive galaxies prevailing at the bright end of the high-z (greater than or similar to 2) LF. A two-fold evolutionary scheme for IR galaxies is envisaged: on the one hand, a starburst-dominated phase in which the Super Massive Black Holes (SMBH) grows and is obscured by dust (possibly triggered by a major merging event), is followed by an AGN-dominated phase, then evolving towards a local elliptical. On the other hand, moderately star-forming galaxies containing a low-luminosity AGN have various properties suggesting they are good candidates for systems in a transition phase preceding the formation of steady spiral galaxies.

A. Cimatti | O. Fèvre | D. Elbaz | G. Zamorani | M. Scodeggio | B. Altieri | S. Bardelli | O. Ilbert | M. Magliocchetti | L. Pozzetti | E. Zucca | A. Cimatti | H. Nguyen | A. Conley | M. Carollo | R. Maiolino | P. Chanial | L. Wang | H. Aussel | A. Poglitsch | D. Shupe | F. Pozzi | N. Seymour | E. Dwek | S. Lilly | A. Smith | D. Clements | G. Lagache | B. Maffei | M. Rowan-Robinson | R. Genzel | P. Popesso | M. Zemcov | L. Levenson | Á. Bongiovanni | S. Oliver | C. Pearson | M. Sargent | J. Cepa | A. Renzini | S. Eales | R. Ivison | B. Schulz | P. Panuzzo | V. Arumugam | L. Tacconi | D. Lutz | E. Daddi | L. Vigroux | K. Isaak | A. Boselli | V. Buat | N. Castro-RodrÍguez | A. Cooray | J. Glenn | M. Griffin | N. Lu | B. O'Halloran | M. Page | A. Papageorgiou | I. Pérez-Fournon | M. Pohlen | J. Stevens | M. Symeonidis | M. Trichas | M. Vaccari | T. Contini | I. Roseboom | D. Rigopoulou | I. Valtchanov | Lian-tao Wang | R. Ivison | M. Béthermin | A. Franceschini | E. Hatziminaoglou | G. Mainetti | E. Sturm | B. Magnelli | S. Berta | P. Andreani | C. Gruppioni | R. Nordon | D. Rosario | E. L. Floch | D. Burgarella | E. Ibar | C. Dowell | L. Marchetti | C. Pearson | L. Riguccini | A. Amblard | A. Cava | S. Madden | G. Rodighiero | K. Tugwell | G. Wright | V. Mainieri | A. Iribarrem | I. Delvecchio | P. Monaco | H. Domínguez-Sánchez | N. Forster-Schreiber | B. Halloran | B. Schulz | N. F. Schreiber | M. Sánchez-Portal | J. Bock | D. Scott | N. Castro-Rodríguez | Hieu Nguyen | A. P. Garćıa | I. Pérez-Fournon | C. Xu | D. Scott | M. Rowan‐Robinson | M. Griffin | S. Oliver | N. Lu | Mattia Vaccari | B. O’Halloran | D. Scott

[1]  L. Pozzetti,et al.  Panchromatic spectral energy distributions of Herschel sources , 2013, 1301.4496.

[2]  B. Altieri,et al.  NO CLEAR SUBMILLIMETER SIGNATURE OF SUPPRESSED STAR FORMATION AMONG X-RAY LUMINOUS ACTIVE GALACTIC NUCLEI , 2012, The Astrophysical Journal.

[3]  G. Zamorani,et al.  Accreting supermassive black holes in the COSMOS field and the connection to their host galaxies , 2012, 1209.1640.

[4]  Douglas Scott,et al.  A UNIFIED EMPIRICAL MODEL FOR INFRARED GALAXY COUNTS BASED ON THE OBSERVED PHYSICAL EVOLUTION OF DISTANT GALAXIES , 2012, 1208.6512.

[5]  M. Huynh,et al.  SPITZER- AND HERSCHEL-BASED SPECTRAL ENERGY DISTRIBUTIONS OF 24 μm BRIGHT z ∼ 0.3–3.0 STARBURSTS AND OBSCURED QUASARS , 2012, 1207.4963.

[6]  A. Franceschini,et al.  Smooth and clumpy dust distributions in AGN: a direct comparison of two commonly explored infrared emission models , 2012, 1207.2668.

[7]  M.Vaccari,et al.  The Evolution of the Far-Infrared Luminosity Function in the Spitzer Wide-area Infrared Extragalactic Legacy Survey , 2012, 1205.5690.

[8]  E. N. Dubois,et al.  The suppression of star formation by powerful active galactic nuclei , 2012, Nature.

[9]  C. Steidel,et al.  THE CHARACTERISTIC STAR FORMATION HISTORIES OF GALAXIES AT REDSHIFTS z ∼ 2–7 , 2012, 1205.0555.

[10]  D. O. Astronomy,et al.  THE STAR FORMATION RATE FUNCTION FOR REDSHIFT z ∼ 4–7 GALAXIES: EVIDENCE FOR A UNIFORM BUILDUP OF STAR-FORMING GALAXIES DURING THE FIRST 3 Gyr OF COSMIC TIME , 2012, 1204.3626.

[11]  A. Cimatti,et al.  The mean star formation rate of X-ray selected active galaxies and its evolution from z~2.5: results from PEP-Herschel , 2012, 1203.6069.

[12]  D. Elbaz,et al.  THE CONTRIBUTION OF STARBURSTS AND NORMAL GALAXIES TO INFRARED LUMINOSITY FUNCTIONS AT z < 2 , 2012, 1202.0290.

[13]  A. Cimatti,et al.  Enhanced star formation rates in AGN hosts with respect to inactive galaxies from PEP-Herschel observations , 2012, 1201.4394.

[14]  T. Jeltema,et al.  HOT AND COLD GALACTIC GAS IN THE NGC 2563 GALAXY GROUP , 2012, 1201.1291.

[15]  B. Weiner,et al.  The Arizona CDFS Environment Survey (ACES): A Magellan/IMACS Spectroscopic Survey of the Chandra Deep Field-South† , 2011, 1112.0312.

[16]  A. Fontana,et al.  On the evolution of the star formation rate function of massive galaxies: constraints at from the GOODS-MUSIC catalogue , 2011, 1112.0029.

[17]  L. S. Anusha,et al.  POLARIZED LINE FORMATION IN MULTI-DIMENSIONAL MEDIA. IV. A FOURIER DECOMPOSITION TECHNIQUE TO FORMULATE THE TRANSFER EQUATION WITH ANGLE-DEPENDENT PARTIAL FREQUENCY REDISTRIBUTION , 2011, 1308.3447.

[18]  P. P. van der Werf,et al.  HERSCHEL-ATLAS GALAXY COUNTS AND HIGH-REDSHIFT LUMINOSITY FUNCTIONS: THE FORMATION OF MASSIVE EARLY-TYPE GALAXIES , 2011, 1108.3911.

[19]  A. Cimatti,et al.  THE LESSER ROLE OF STARBURSTS IN STAR FORMATION AT z = 2 , 2011, 1108.0933.

[20]  A. Koekemoer,et al.  GALAXY STRUCTURE AND MODE OF STAR FORMATION IN THE SFR–MASS PLANE FROM z ∼ 2.5 TO z ∼ 0.1 , 2011, 1107.0317.

[21]  B. Magnelli,et al.  PACS Evolutionary Probe (PEP) – a Herschel key program , 2011, 1106.3285.

[22]  B. Garilli,et al.  The evolution of quiescent galaxies at high redshifts (z≥ 1.4) , 2011, 1106.3194.

[23]  A. Cimatti,et al.  Building the cosmic infrared background brick by brick with Herschel/PEP. ⋆ , 2011, 1106.3070.

[24]  M. Carollo,et al.  MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION. II. THE QUENCHING OF SATELLITE GALAXIES AS THE ORIGIN OF ENVIRONMENTAL EFFECTS , 2011, 1106.2546.

[25]  A. Cimatti,et al.  THE IMPACT OF EVOLVING INFRARED SPECTRAL ENERGY DISTRIBUTIONS OF GALAXIES ON STAR FORMATION RATE ESTIMATES , 2011, 1106.1186.

[26]  S. Serjeant,et al.  Far-infrared luminosity function of local star-forming galaxies in the AKARI Deep Field-South , 2011, 1106.0899.

[27]  A. Cimatti,et al.  The PEP survey: clustering of infrared-selected galaxies and structure formation at z ∼ 2 in GOODS-South , 2011, 1105.4093.

[28]  D. Calzetti,et al.  GOODS–Herschel: an infrared main sequence for star-forming galaxies , 2011, 1105.2537.

[29]  Garching,et al.  THE POPULATION OF HIGH-REDSHIFT ACTIVE GALACTIC NUCLEI IN THE CHANDRA-COSMOS SURVEY , 2011, 1103.2570.

[30]  D. Elbaz,et al.  Evolution of the dusty infrared luminosity function from z = 0 to z = 2.3 using observations from Spitzer , 2011, 1101.2467.

[31]  S. Maddox,et al.  Herschel-ATLAS: rapid evolution of dust in galaxies over the last 5 billion years , 2010, 1012.5186.

[32]  H. Rix,et al.  THE STAR FORMATION HISTORY OF MASS-SELECTED GALAXIES IN THE COSMOS FIELD , 2010, 1011.6370.

[33]  M. Halpern,et al.  A Monte Carlo approach to evolution of the far-infrared luminosity function with BLAST , 2010, 1010.1176.

[34]  Guilaine Lagache,et al.  Modeling the evolution of infrared galaxies: a parametric backward evolution model , 2010, 1010.1150.

[35]  D. Elbaz,et al.  The Herschel Multi-Tiered Extragalactic Survey: source extraction and cross-identifications in confusion-dominated SPIRE images , 2010, 1009.1658.

[36]  K. Schawinski,et al.  THE MULTIWAVELENGTH SURVEY BY YALE–CHILE (MUSYC): DEEP MEDIUM-BAND OPTICAL IMAGING AND HIGH-QUALITY 32-BAND PHOTOMETRIC REDSHIFTS IN THE ECDF-S , 2010, 1008.2974.

[37]  A. Cimatti,et al.  The star-formation rates of 1.5 < z < 2.5 massive galaxies , 2010 .

[38]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[39]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[40]  M.Vaccari,et al.  Herschel unveils a puzzling uniformity of distant dusty galaxies , 2010, 1005.2859.

[41]  A. Cimatti,et al.  Star formation in AGN hosts in GOODS-N , 2010, 1005.2562.

[42]  A. Cimatti,et al.  PEP: First Herschel probe of dusty galaxy evolution up to z ~ 3 , 2010, 1005.1473.

[43]  A. Cimatti,et al.  The first Herschel view of the mass-SFR link in high-z galaxies , 2010, 1005.1089.

[44]  A. Cimatti,et al.  Dissecting the cosmic infra-red background with Herschel/PEP , 2010, 1005.1073.

[45]  A. Cimatti,et al.  Star formation rates and masses of z∼ 2 galaxies from multicolour photometry , 2010, 1004.4546.

[46]  D. Elbaz,et al.  A MULTI-WAVELENGTH VIEW OF THE STAR FORMATION ACTIVITY AT z ∼ 3 , 2010, 1003.5773.

[47]  B. Garilli,et al.  MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION IN SDSS AND zCOSMOS AND THE ORIGIN OF THE SCHECHTER FUNCTION , 2010, 1003.4747.

[48]  D. Elbaz,et al.  DIFFERENT STAR FORMATION LAWS FOR DISKS VERSUS STARBURSTS AT LOW AND HIGH REDSHIFTS , 2010, 1003.3889.

[49]  Harvard,et al.  Intense star formation within resolved compact regions in a galaxy at z = 2.3 , 2010, Nature.

[50]  N. Bavouzet,et al.  Submillimeter number counts at 250 μm, 350 μm and 500 μm in BLAST data , 2010, 1003.0833.

[51]  S. Charlot,et al.  New insight into the relation between star formation activity and dust content in galaxies , 2010, 1001.2309.

[52]  B. Garilli,et al.  Mid- and far-infrared luminosity functions and galaxy evolution from multiwavelength Spitzer observations up to z ~ 2.5 , 2009, 0910.5649.

[53]  S. Maddox,et al.  The Herschel ATLAS , 2009, 0910.4279.

[54]  B. Garilli,et al.  THE zCOSMOS 10k-BRIGHT SPECTROSCOPIC SAMPLE , 2009 .

[55]  CEA-Saclay,et al.  Deep Spitzer 24 μm COSMOS Imaging. I. The Evolution of Luminous Dusty Galaxies—Confronting the Models , 2009, 0909.4303.

[56]  P. Hopkins,et al.  Are most low-luminosity active galactic nuclei really obscured? , 2009 .

[57]  B. Garilli,et al.  zCOSMOS – 10k-bright spectroscopic sample - The bimodality in the galaxy stellar mass function: exploring its evolution with redshift , 2009, 0907.5416.

[58]  Heidelberg,et al.  Star formation and mass assembly in high-redshift galaxies , 2009, 0905.0683.

[59]  D. Thompson,et al.  STAR FORMATION AND DUST OBSCURATION AT z ≈ 2: GALAXIES AT THE DAWN OF DOWNSIZING , 2009, 0905.1674.

[60]  D. Thompson,et al.  GALAXY STELLAR MASS ASSEMBLY BETWEEN 0.2 < z < 2 FROM THE S-COSMOS SURVEY , 2009, 0903.0102.

[61]  P. Hopkins,et al.  Are Most Low-Luminosity AGN Really Obscured? , 2009, 0901.2936.

[62]  B. Magnelli,et al.  The 0.4 < z < 1.3 star formation history of the Universe as viewed in the far-infrared , 2009, 0901.1543.

[63]  L. Cowie,et al.  A Highly Complete Spectroscopic Survey of the GOODS-N Field , 2008, 0812.2481.

[64]  B. Weiner,et al.  DETERMINING STAR FORMATION RATES FOR INFRARED GALAXIES , 2008, 0810.4150.

[65]  J. Trump,et al.  HIGH-REDSHIFT QUASARS IN THE COSMOS SURVEY: THE SPACE DENSITY OF z > 3 X-RAY SELECTED QSOs , 2008, 0809.2513.

[66]  D. Thompson,et al.  COSMOS PHOTOMETRIC REDSHIFTS WITH 30-BANDS FOR 2-deg2 , 2008, 0809.2101.

[67]  G. Zamorani,et al.  The Contribution of AGNs and Star-forming Galaxies to the Mid-Infrared as Revealed by Their Spectral Energy Distributions , 2008 .

[68]  D. Elbaz,et al.  A simple model to interpret the ultraviolet, optical and infrared emission from galaxies , 2008, 0806.1020.

[69]  F. Matteucci,et al.  The chemical evolution of a Milky Way-like galaxy: the importance of a cosmologically motivated infall law , 2008, 0802.1847.

[70]  M. Rowan-Robinson,et al.  The Herschel Multi-tiered Extragalactic Survey: HerMES , 2012, 1203.2562.

[71]  O. Fèvre,et al.  Spectral Energy Distributions of Hard X-Ray Selected Active Galactic Nuclei in the XMM-Newton Medium Deep Survey , 2007 .

[72]  P. Hopkins,et al.  A Cosmological Framework for the Co-Evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies. I. Galaxy Mergers and Quasar Activity , 2007, 0706.1243.

[73]  P. Hopkins,et al.  A Cosmological Framework for the Co-Evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies. II. Formation of Red Ellipticals , 2007, 0706.1246.

[74]  A. Cimatti,et al.  Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth , 2007, 0705.2831.

[75]  J. Starck,et al.  The reversal of the star formation-density relation in the distant universe , 2007, astro-ph/0703653.

[76]  O. Fèvre,et al.  Spectral Energy Distributions of Hard X-ray selected AGNs in the XMDS Survey , 2007, astro-ph/0703255.

[77]  J. Wall,et al.  The evolution of submillimetre galaxies : two populations and a redshift cut-off , 2007, astro-ph/0702682.

[78]  G. Helou,et al.  The Infrared Luminosity Function of Galaxies at Redshifts z = 1 and z ~ 2 in the GOODS Fields , 2007, astro-ph/0701283.

[79]  S. Maddox,et al.  zCOSMOS: A Large VLT/VIMOS Redshift Survey Covering 0 < z < 3 in the COSMOS Field , 2006, astro-ph/0612291.

[80]  D. Thompson,et al.  COSMOS Morphological Classification with the Zurich Estimator of Structural Types (ZEST) and the Evolution Since z = 1 of the Luminosity Function of Early, Disk, and Irregular Galaxies , 2006, astro-ph/0611644.

[81]  D. Calzetti,et al.  The Mid-Infrared Spectrum of Star-forming Galaxies: Global Properties of Polycyclic Aromatic Hydrocarbon Emission , 2006, astro-ph/0610913.

[82]  B. Garilli,et al.  Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.

[83]  A. Fontana,et al.  The GOODS-MUSIC sample: a multicolour catalog of near-IR selected galaxies in the GOODS-South field , , 2006, astro-ph/0603094.

[84]  A. Szalay,et al.  The Sloan Digital Sky Survey Quasar Survey: Quasar Luminosity Function from Data Release 3 , 2006, astro-ph/0601434.

[85]  Padova,et al.  Revisiting the infrared spectra of active galactic nuclei with a new torus emission model , 2005, astro-ph/0511428.

[86]  Tucson,et al.  Infrared Luminosity Functions from the Chandra Deep Field-South: The Spitzer View on the History of Dusty Star Formation at 0 ≲ z ≲ 1* , 2005, astro-ph/0506462.

[87]  P. McCarthy,et al.  The Las Campanas Infrared Survey — V. Keck spectroscopy of a large sample of extremely red objects , 2005, astro-ph/0505119.

[88]  Christopher D. Martin,et al.  Spitzer View on the Evolution of Star-forming Galaxies from z = 0 to z ~ 3 , 2005, astro-ph/0505101.

[89]  A. Fontana,et al.  The K20 survey. VII. The spectroscopic catalogue: spectral properties and evolution of the galaxy population ⋆, ⋆⋆ , 2005, astro-ph/0504248.

[90]  M. Nonino,et al.  The Great Observatories Origins Deep Survey VLT/VIMOS Spectroscopy in the GOODS-South Field , 2005, 0802.2930.

[91]  W. Brandt,et al.  Rapid growth of black holes in massive star-forming galaxies , 2005, Nature.

[92]  T. D. Matteo,et al.  Energy input from quasars regulates the growth and activity of black holes and their host galaxies , 2005, Nature.

[93]  I. Smail,et al.  A Redshift Survey of the Submillimeter Galaxy Population , 2004, astro-ph/0412573.

[94]  I. Hook,et al.  Cosmic Star Formation History and Its Dependence on Galaxy Stellar Mass , 2004, astro-ph/0411775.

[95]  Thomas Henning,et al.  The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory , 2004, Astronomical Telescopes + Instrumentation.

[96]  G. Zamorani,et al.  The Mid-Infrared Luminosity Function of Galaxies in the European Large Area Infrared Space Observatory Survey Southern Fields , 2004 .

[97]  S. Ravindranath,et al.  The Hubble Higher z Supernova Search: Supernovae to z ≈ 1.6 and Constraints on Type Ia Progenitor Models , 2004, astro-ph/0406546.

[98]  E. Wright,et al.  The Spitzer Space Telescope Mission , 2004, astro-ph/0406223.

[99]  Patrick J. McCarthy,et al.  Hubble Space Telescope Imaging and Keck Spectroscopy of z ≈ 6 i-Band Dropout Galaxies in the Advanced Camera for Surveys GOODS Fields , 2004 .

[100]  A. Cimatti,et al.  The K20 survey. VI. The distribution of the stellar masses in galaxies up to z 2 , 2004, astro-ph/0405055.

[101]  B. Garilli,et al.  Bias in the estimation of global luminosity functions , 2004, astro-ph/0402202.

[102]  P. Capak,et al.  A Large Sample of Spectroscopic Redshifts in the ACS-GOODS Region of the Hubble Deep Field North , 2004, astro-ph/0401354.

[103]  J. Newman,et al.  The Team Keck Treasury Redshift Survey of the GOODS-North Field , 2004, astro-ph/0401353.

[104]  S. Serjeant,et al.  The European Large Area ISO Survey – IX. The 90-μm luminosity function from the Final Analysis sample , 2004, astro-ph/0401289.

[105]  L. Kewley,et al.  The Chandra Deep Field-South: Optical Spectroscopy. I. , 2003, astro-ph/0312324.

[106]  H. Rix,et al.  The Fundamental Plane of Field Early-Type Galaxies at z = 1 , 2003, astro-ph/0312230.

[107]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[108]  Padova,et al.  Color-selected Galaxies at z ≈ 6 in the Great Observatories Origins Deep Survey , 2003, astro-ph/0309070.

[109]  N. Drory,et al.  The Munich Near-Infrared Cluster Survey ( MUNICS ) – II . The K-band luminosity function of field galaxies to z ∼ 1 . 2 , 2022 .

[110]  J. Surace,et al.  The IRAS Revised Bright Galaxy Sample , 2003, astro-ph/0306263.

[111]  D. Clements,et al.  Starburst and AGN activity in ultraluminous infrared galaxies , 2003, astro-ph/0304154.

[112]  A. Bressan,et al.  Spatially-resolved spectrophotometric analysis and modelling of the Superantennae , 2003, astro-ph/0303259.

[113]  G. Zamorani,et al.  A new method for ISOCAM data reduction – II. Mid‐infrared extragalactic source counts in the ELAIS Southern field , 2002, astro-ph/0205173.

[114]  L. Moscardini,et al.  Measuring the Redshift Evolution of Clustering: the Hubble Deep Field South , 2001, astro-ph/0109453.

[115]  Technology,et al.  A small-area faint KX redshift survey for QSOs in the ESO Imaging Survey Chandra Deep Field South , 2001, astro-ph/0107451.

[116]  N. S. F. Center,et al.  THE COSMIC INFRARED BACKGROUND: Measurements and Implications ⁄ , 2001, astro-ph/0105539.

[117]  D. Elbaz,et al.  Interpreting the Cosmic Infrared Background: Constraints on the Evolution of the Dust-enshrouded Star Formation Rate , 2001, astro-ph/0103067.

[118]  R. McMahon,et al.  A deep radio survey in the ISO-ELAIS fields: optical identification with the APM catalogue/atl> , 2001 .

[119]  U. Berkeley,et al.  Extragalactic Results from the Infrared Space Observatory , 2000, astro-ph/0002184.

[120]  D. Hogg,et al.  Caltech Faint Galaxy Redshift Survey. X. A Redshift Survey in the Region of the Hubble Deep Field North , 1999, astro-ph/9912048.

[121]  P. Panuzzo,et al.  Joint formation of QSOs and spheroids: QSOs as clocks of star formation in spheroids , 1999, astro-ph/9911304.

[122]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[123]  I. Smail,et al.  A Deep Submillimeter Survey of Lensing Clusters: A New Window on Galaxy Formation and Evolution , 1997, astro-ph/9708135.

[124]  Ramesh Narayan,et al.  Explaining the spectrum of Sagittarius A* with a model of an accreting black hole , 1995, Nature.

[125]  R. Narayan,et al.  Advection-dominated Accretion: A Self-similar Solution , 1994, astro-ph/9403052.

[126]  Will Saunders,et al.  On the likelihood ratio for source identification. , 1992 .

[127]  R. Ellis,et al.  The 60-μ and far-infrared luminosity functions of IRAS galaxies , 1990 .

[128]  de T. Jong,et al.  The Infrared Astronomical Satellite (IRAS) mission , 1984 .

[129]  J. N. Bahcall,et al.  On the simultaneous analysis of several complete samples - The V/Vmax and Ve/Va variables, with applications to quasars , 1980 .

[130]  Maarten Schmidt,et al.  Space Distribution and Luminosity Functions of Quasi-Stellar Radio Sources , 1968 .