Ergodic properties of the Erdös measure, the entropy of the goldenshift, and related problems

AbstractWe define a two-sided analog of the Erdös measure on the space of two-sided expansions with respect to the powers of the golden ratio, or, equivalently, the Erdös measure on the 2-torus. We construct the transformation (goldenshift) preserving both Erdös and Lebesgue measures on $$\mathbb{T}^2 $$ that is the induced automorphism with respect to the ordinary shift (or the corresponding Fibonacci toral automorphism) and proves to be Bernoulli with respect to both measures in question. This provides a direct way to obtain formulas for the entropy dimension of the Erdös measure on the interval, its entropy in the sense of Garsia-Alexander-Zagier and some other results. Besides, we study central measures on the Fibonacci graph, the dynamics of expansions and related questions.

[1]  A. Wintner,et al.  Distribution functions and the Riemann zeta function , 1935 .

[2]  A. Rényi Representations for real numbers and their ergodic properties , 1957 .

[3]  Topics in Number Theory , 1958 .

[4]  W. Parry On theβ-expansions of real numbers , 1960 .

[5]  C. Caramanis What is ergodic theory , 1963 .

[6]  A. Garsia Entropy and singularity of infinite convolutions. , 1963 .

[7]  R. Adler,et al.  Entropy, a complete metric invariant for automorphisms of the torus. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[8]  D. Ornstein Ergodic theory, randomness, and dynamical systems , 1974 .

[9]  D. Voiculescu,et al.  Representations of AF-algebras and of the group U (∞) , 1975 .

[10]  R. K. Thomas ERGODIC THEORY, RANDOMNESS, AND DYNAMICAL SYSTEMS , 1977 .

[11]  L. Young Dimension, entropy and Lyapunov exponents , 1982, Ergodic Theory and Dynamical Systems.

[12]  Vadim A. Kaimanovich,et al.  Random Walks on Discrete Groups: Boundary and Entropy , 1983 .

[13]  James A. Yorke,et al.  Fat baker's transformations , 1984, Ergodic Theory and Dynamical Systems.

[14]  A. Vershik,et al.  A theorem on the Markov periodic approximation in ergodic theory , 1985 .

[15]  Anne Bertrand-Mathis Développement en base $\theta $, répartition modulo un de la suite $(x\theta ^n)$, n$\ge 0$, langages codés et $\theta $-shift , 1986 .

[16]  J. Vickers,et al.  Number Theory and Dynamical Systems , 1989 .

[17]  Vilmos Komornik,et al.  Characterization of the unique expansions $1=\sum^{\infty}_{i=1}q^{-n_ i}$ and related problems , 1990 .

[18]  J. Alexander,et al.  The Entropy of a Certain Infinitely Convolved Bernoulli Measure , 1991 .

[19]  A. Vershik Arithmetic isomorphism of hyperbolic toral automorphisms and sofic shifts , 1992 .

[20]  Anatoly M. Vershik,et al.  Adic models of ergodic transformations, spectral theory, substitutions, and related topics , 1992 .

[21]  F. Ledrappier,et al.  A dimension formula for Bernoulli convolutions , 1994 .

[22]  Cor Kraaikamp,et al.  The natural extension of the β-transformation , 1996 .

[23]  S. L. Borgne Dynamique symbolique et proprietes stochastiques des automorphismes du tore : cas hyperbolique et quasi-hyperbolique , 1997 .

[24]  S. Lalley Random Series in Powers of Algebraic Integers: Hausdorff Dimension of the Limit Distribution , 1998 .

[25]  Nikita Sidorov,et al.  Bijective Arithmetic Codings of Hyperbolic Automorphisms of the 2-Torus, and Binary Quadratic Forms , 1998 .

[26]  Richard Kenyon,et al.  Arithmetic construction of sofic partitions of hyperbolic toral automorphisms , 1998, Ergodic Theory and Dynamical Systems.

[27]  Nikita Sidorov,et al.  Number of representations related to a linear recurrent basis , 1999 .