Romeo: A Design Tool for Embedding Transformable Parts in 3D Models to Robotically Augment Default Functionalities

Reconfiguring shapes of objects enables transforming existing passive objects with robotic functionalities, e.g., a transformable coffee cup holder can be attached to a chair's armrest, a piggy bank can reach out an arm to 'steal' coins. Despite the advance in end-user 3D design and fabrication, it remains challenging for non-experts to create such 'transformables' using existing tools due to the requirement of specific engineering knowledge such as mechanisms and robotic design. We present Romeo -- a design tool for creating transformables to robotically augment objects' default functionalities. Romeo allows users to transform an object into a robotic arm by expressing at a high level what type of task is expected. Users can select which part of the object to be transformed, specify motion points in space for the transformed part to follow and the corresponding action to be taken. Romeo then automatically generates a robotic arm embedded in the transformable part ready for fabrication. A design session validated this tool where participants used Romeo to accomplish controlled design tasks and to open-endedly create coin-stealing piggy banks by transforming 3D objects of their own choice.

[1]  Markus H. Gross,et al.  Interactive design of 3D-printable robotic creatures , 2015, ACM Trans. Graph..

[2]  Denis Zorin,et al.  Interactive Modeling of Mechanical Objects , 2016, Comput. Graph. Forum.

[3]  Wen-Chieh Lin,et al.  Making and animating transformable 3D models , 2016, Comput. Graph..

[4]  Rubaiat Habib Kazi,et al.  DreamSketch: Early Stage 3D Design Explorations with Sketching and Generative Design , 2017, UIST.

[5]  Xiang 'Anthony' Chen,et al.  Robiot: A Design Tool for Actuating Everyday Objects with Automatically Generated 3D Printable Mechanisms , 2019, UIST.

[6]  Tovi Grossman,et al.  Geppetto: Enabling Semantic Design of Expressive Robot Behaviors , 2019, CHI.

[7]  Sehoon Ha,et al.  Computational Design of Robotic Devices From High-Level Motion Specifications , 2018, IEEE Transactions on Robotics.

[8]  Bernhard Thomaszewski,et al.  LinkEdit: interactive linkage editing using symbolic kinematics , 2015, ACM Trans. Graph..

[9]  Wojciech Matusik,et al.  Computational design of mechanical characters , 2013, ACM Trans. Graph..

[10]  Nathaniel Hudson,et al.  Understanding Newcomers to 3D Printing: Motivations, Workflows, and Barriers of Casual Makers , 2016, CHI.

[11]  Ye Yuan,et al.  Computational abstractions for interactive design of robotic devices , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[12]  Aaron Hertzmann,et al.  Learning 3D mesh segmentation and labeling , 2010, ACM Trans. Graph..

[13]  Keenan Crane,et al.  Computational design of telescoping structures , 2017, ACM Trans. Graph..

[14]  Daniela Rus,et al.  Integrated Codesign of Printable Robots , 2015 .

[15]  Katharina Mülling,et al.  Automatic Design of Task-specific Robotic Arms , 2018, ArXiv.

[16]  Alex S. Taylor,et al.  Mechanical hijacking: how robots can accelerate UbiComp deployments , 2011, UbiComp '11.

[17]  Doug L. James,et al.  Fabricating articulated characters from skinned meshes , 2012, ACM Trans. Graph..

[18]  Tovi Grossman,et al.  RetroFab: A Design Tool for Retrofitting Physical Interfaces using Actuators, Sensors and 3D Printing , 2016, CHI.

[19]  Jan Kautz,et al.  3D-printing of non-assembly, articulated models , 2012, ACM Trans. Graph..

[20]  Xiang 'Anthony' Chen,et al.  Reprise: A Design Tool for Specifying, Generating, and Customizing 3D Printable Adaptations on Everyday Objects , 2016, UIST.

[21]  Ye Yuan,et al.  Computational design of transformables , 2018, Comput. Graph. Forum.

[22]  Hadas Kress-Gazit,et al.  Robot Creation from Functional Specifications , 2015, ISRR.

[23]  Wojciech Matusik,et al.  Boxelization: folding 3D objects into boxes , 2014, ACM Trans. Graph..

[24]  Wojciech Matusik,et al.  AutoConnect , 2015, ACM Trans. Graph..

[25]  Eitan Grinspun,et al.  Computational design of reconfigurables , 2016, ACM Trans. Graph..

[26]  Eitan Grinspun,et al.  Computational design of linkage-based characters , 2014, ACM Trans. Graph..

[27]  Pedro Lopes,et al.  TrussFormer: 3D Printing Large Kinetic Structures , 2018, UIST.

[28]  Xiang 'Anthony' Chen,et al.  Forte: User-Driven Generative Design , 2018, CHI.

[29]  Wei Zhao,et al.  Interactive robogami: An end-to-end system for design of robots with ground locomotion , 2017, Int. J. Robotics Res..

[30]  Robert Kovacs,et al.  Patching Physical Objects , 2015, UIST.

[31]  Jane McGonigal,et al.  Keynote: Jane McGonigal , 2012, ACM Transactions on Graphics.

[32]  Patrick Baudisch,et al.  Grafter: Remixing 3D-Printed Machines , 2018, CHI.

[33]  Sehoon Ha,et al.  Iterative Training of Dynamic Skills Inspired by Human Coaching Techniques , 2014, ACM Trans. Graph..

[34]  Hao Zhang,et al.  Foldabilizing furniture , 2015, ACM Trans. Graph..

[35]  J. Denavit,et al.  A kinematic notation for lower pair mechanisms based on matrices , 1955 .

[36]  Vijay Kumar,et al.  A Design Environment for the Rapid Specification and Fabrication of Printable Robots , 2014, ISER.