Tailoring microstructure and mechanical performance of the TC4 titanium alloy brazed joint through doping rare-earth element Dy into Ti-Cu-Ni filler alloy

[1]  F. Barson,et al.  Thermal expansion of rare earth metals , 1957 .

[2]  G. Morscher,et al.  Active metal brazing and characterization of brazed joints in titanium to carbon–carbon composites , 2005 .

[3]  C. Koo,et al.  Vacuum-furnace brazing of C103 and Ti–6Al–4V with Ti–15Cu–15Ni filler-metal , 2005 .

[4]  C. Koo,et al.  The study of vacuum-furnace brazing of C103 and Ti-6Al-4V using Ti-15Cu-15Ni foil , 2005 .

[5]  C. Chang,et al.  Infrared brazing of high-strength titanium alloys by Ti–15Cu–15Ni and Ti–15Cu–25Ni filler foils , 2006 .

[6]  C. Chang,et al.  Microstructural evolution of infrared brazed Ti-15-3 alloy using Ti–15Cu–15Ni and Ti–15Cu–25Ni fillers , 2006 .

[7]  C. Pisani,et al.  Thermodynamic and ab initio investigation of the Al–H–Mg system , 2007 .

[8]  C. Chang,et al.  Infrared brazing Ti–6Al–4V and SP-700 alloys using the Ti–20Zr–20Cu–20Ni braze alloy , 2007 .

[9]  J. Indacochea,et al.  Phase transformations in Ag70.5Cu26.5Ti3 filler alloy during brazing processes , 2008 .

[10]  Yit‐Tsong Chen,et al.  Infrared brazing of Ti50Al50 and Ti–6Al–4V using two Ti-based filler metals , 2008 .

[11]  Y. Chen,et al.  Microstructural characterization and mechanical properties in friction stir welding of aluminum and titanium dissimilar alloys , 2009 .

[12]  Mei Li,et al.  Thermodynamic description of the Dy–Ni system , 2009 .

[13]  H. Fraser,et al.  ω-Assisted nucleation and growth of α precipitates in the Ti–5Al–5Mo–5V–3Cr–0.5Fe β titanium alloy , 2009 .

[14]  Y. Lei,et al.  Study on the Microstructure and Wettability of an Al-Cu-Si Braze Containing Small Amounts of Rare Earth Erbium , 2009, Journal of Materials Engineering and Performance.

[15]  K. Kainer,et al.  Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets , 2010 .

[16]  Yit‐Tsong Chen,et al.  Strong bonding of infrared brazed α2-Ti3Al and Ti–6Al–4V using Ti–Cu–Ni fillers , 2010 .

[17]  C. Chang,et al.  Microstructural Evolution of Infrared Brazed CP-Ti Using Ti-Cu-Ni Brazes , 2011 .

[18]  T. Jarvis,et al.  The bonding of nickel foam to Ti–6Al–4V using Ti–Cu–Ni braze alloy , 2011 .

[19]  S. Y. Chang,et al.  Brazing of 6061 aluminum alloy/Ti–6Al–4V using Al–Si–Cu–Ge filler metals , 2012 .

[20]  E. Ganjeh,et al.  Increasing Ti-6Al-4V brazed joint strength equal to the base metal by Ti and Zr amorphous filler alloys , 2012 .

[21]  E. Ganjeh,et al.  Microstructural, mechanical and fractographical study of titanium-CP and Ti–6Al–4V similar brazing with Ti-based filler , 2013 .

[22]  Hongbo Guo,et al.  Effects of Dy on the adherence of Al2O3/NiAl interface: A combined first-principles and experimental studies , 2013 .

[23]  L. Tsao Direct active soldering of micro-arc oxidized Ti/Ti joints in air using Sn3.5Ag0.5Cu4Ti(RE) filler , 2013 .

[24]  S. Xue,et al.  Growth behaviors of intermetallic compound layers in Cu/Al joints brazed with Zn–22Al and Zn–22Al–0.05Ce filler metals , 2013 .

[25]  Dongyu Fan,et al.  Microstructure and Mechanical Performanceof the Braze Joints of CfSiC Composite and Ti Alloy with Ti-Zr-Be , 2014 .

[26]  I. Yadroitsava,et al.  Selective laser melting of Ti6Al4V alloy for biomedical applications: Temperature monitoring and microstructural evolution , 2014 .

[27]  Xingke Zhao,et al.  Microstructures and mechanical properties of Cf/SiC composite and TC4 alloy joints brazed with (Ti–Zr–Cu–Ni)+W composite filler materials , 2014 .

[28]  M. M. Atabaki,et al.  Diffusion brazing of Ti–6Al–4V and austenitic stainless steel using silver-based interlayer , 2014 .

[29]  A. Makino,et al.  Enhancement of glass-forming ability and plasticity of Cu-rich Cu-Zr-Al bulk metallic glasses by minor addition of Dy , 2014 .

[30]  D. Toprek,et al.  Ab initio studies of the structural, elastic, electronic and thermal properties of NiTi2 intermetallic , 2015 .

[31]  A. Pathak,et al.  Cerium: An Unlikely Replacement of Dysprosium in High Performance Nd–Fe–B Permanent Magnets , 2015, Advanced materials.

[32]  Hao Wang,et al.  Effects of rare earth La on microstructure and properties of Ag–21Cu–25Sn alloy ribbon prepared by melt spinning , 2015 .

[33]  S. Bag,et al.  Influence of heat input in microwelding of titanium alloy by micro plasma arc , 2016 .

[34]  A. Devaraj,et al.  A low-cost hierarchical nanostructured beta-titanium alloy with high strength , 2016, Nature Communications.

[35]  L. Keer,et al.  Understanding of micro-alloying on plasticity in Cu46Zr47−xAl7Dyx (0≤ x ≤ 8) bulk metallic glasses under compression: Based on mechanical relaxations and theoretical analysis , 2016 .

[36]  Xiaojun Li,et al.  Interfacial reactions between Cu and Zn20Sn solder doped with minor RE , 2017, Journal of Materials Science: Materials in Electronics.

[37]  Ji-cai Feng,et al.  Zr hydrogenation by cathodic charging and its application in TC4 alloy diffusion bonding , 2017 .

[38]  V. E. Yeganeh,et al.  Effect of beam offset on microstructure and mechanical properties of dissimilar electron beam welded high temperature titanium alloys , 2017 .

[39]  H. Kadiri,et al.  The effect of rare earth element segregation on grain boundary energy and mobility in magnesium and ensuing texture weakening , 2018 .

[40]  Dongpo Wang,et al.  Vacuum brazing of Ti2AlNb and TC4 alloys using Ti–Zr–Cu–Ni and Ti–Zr–Cu–Ni + Mo filler metals: Microstructural evolution and mechanical properties , 2018 .

[41]  Huiming Chen,et al.  Effects of Dy substitution for Sn on the solderability and mechanical property of the standard near eutectic Sn–Ag–Cu alloy , 2018, Journal of Materials Science: Materials in Electronics.

[42]  Zengliang Gao,et al.  An analysis of high-temperature microstructural stability and mechanical performance of the Hastelloy N-Hastelloy N Superalloy joint bonded with pure Ti , 2018 .

[43]  S. Chattopadhyaya,et al.  Experimental investigation of pug cutter embedded TIG welding of Ti-6Al-4V titanium alloy , 2018, Journal of Mechanical Science and Technology.

[44]  Xian‐Cheng Zhang,et al.  Effects of low-temperature transformation and transformation-induced plasticity on weld residual stresses: Numerical study and neutron diffraction measurement , 2018, Materials & Design.

[45]  Zengliang Gao,et al.  Microstructural modification and mechanical characterization for a laser-induced composite coating during thermal exposure , 2019, Surface and Coatings Technology.

[46]  R. Goodall,et al.  Brazing filler metals , 2019, International Materials Reviews.

[47]  Ji-cai Feng,et al.  Microstructure Evolution and Mechanical Properties of Titanium/Alumina Brazed Joints for Medical Implants , 2019, Metals.

[48]  Qi Xuan,et al.  Multiview Generative Adversarial Network and Its Application in Pearl Classification , 2019, IEEE Transactions on Industrial Electronics.

[49]  Y. Bréchet,et al.  Micromechanical behavior and thermal stability of a dual-phase α+α’ titanium alloy produced by additive manufacturing , 2019, Acta Materialia.

[50]  Xiaoguo Song,et al.  Joining of SiO2 ceramic and TC4 alloy by nanoparticles modified brazing filler metal , 2020 .