Minimal numerical differentiation formulas

We investigate numerical differentiation formulas on irregular centers in two or more variables that are exact for polynomials of a given order and minimize an absolute seminorm of the weight vector. Error bounds are given in terms of a growth function that carries the information about the geometry of the centers. Specific forms of weighted $$\ell _1$$ℓ1 and weighted least squares minimization are proposed that produce numerical differentiation formulas with particularly good performance in numerical experiments. The results are of interest in particular for meshless generalized finite difference methods as they provide a consistency error analysis for such methods.

[1]  L. N. Vicente,et al.  Geometry of sample sets in derivative-free optimization: polynomial regression and underdetermined interpolation , 2008 .

[2]  G. Burton Sobolev Spaces , 2013 .

[3]  Oleg Davydov On the Approximation Power of Local Least Squares Polynomials , 2001 .

[4]  P. G. Ciarlet,et al.  General lagrange and hermite interpolation in Rn with applications to finite element methods , 1972 .

[5]  Jeremy Levesley,et al.  Error bounds for anisotropic RBF interpolation , 2010, J. Approx. Theory.

[6]  H. Stetter Analysis of Discretization Methods for Ordinary Differential Equations , 1973 .

[7]  Oleg Davydov,et al.  Adaptive RBF-FD method for elliptic problems with point singularities in 2D , 2016, Appl. Math. Comput..

[9]  Oleg Davydov,et al.  On the optimal shape parameter for Gaussian radial basis function finite difference approximation of the Poisson equation , 2011, Comput. Math. Appl..

[10]  G. W. Stewart,et al.  Matrix algorithms , 1998 .

[11]  慧 廣瀬 A Mathematical Introduction to Compressive Sensing , 2015 .

[12]  R. Schaback Error Analysis of Nodal Meshless Methods , 2016, 1612.07550.

[13]  Benjamin Seibold,et al.  Minimal positive stencils in meshfree finite difference methods for the Poisson equation , 2008, 0802.2674.

[14]  Marco Vianello,et al.  Bivariate polynomial interpolation on the square at new nodal sets , 2005, Appl. Math. Comput..

[15]  Ulrich Reif,et al.  Two-stage approximation methods with extended B-splines , 2013, Math. Comput..

[16]  Gregory E. Fasshauer,et al.  Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.

[17]  Chen Zhi-xiang Error estimates for scattered data interpolation on spheres , 2009 .

[18]  Robert Schaback,et al.  Error bounds for kernel-based numerical differentiation , 2016, Numerische Mathematik.

[19]  Frank Zeilfelder,et al.  Scattered Data Fitting by Direct Extension of Local Polynomials to Bivariate Splines , 2004, Adv. Comput. Math..

[20]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[21]  F. L. Bauer,et al.  Absolute and monotonic norms , 1961 .

[22]  Oleg Davydov,et al.  Adaptive meshless centres and RBF stencils for Poisson equation , 2011, J. Comput. Phys..

[23]  Oleg Davydov,et al.  Error bound for radial basis interpolation in terms of a growth function , 2007 .

[24]  T. Liszka,et al.  The finite difference method at arbitrary irregular grids and its application in applied mechanics , 1980 .

[25]  B. Seibold,et al.  Performance of algebraic multigrid methods for non‐symmetric matrices arising in particle methods , 2009, Numer. Linear Algebra Appl..

[26]  Robert Schaback,et al.  Optimal Stencils in Sobolev Spaces , 2016, 1611.04750.

[27]  Luis Gavete,et al.  An h-adaptive method in the generalized finite differences , 2003 .

[28]  Bengt Fornberg,et al.  A primer on radial basis functions with applications to the geosciences , 2015, CBMS-NSF regional conference series in applied mathematics.