Subquadratic-time factoring of polynomials over finite fields

New probabilistic algorithms are presented for factoring univariate polynomials over finite fields. The algorithms factor a polynomial of degree n over a finite field of constant cardinality in time O(n 1.815 ). Previous algorithms required time Θ(n 2+o(1) ). The new algorithms rely on fast matrix multiplication techniques. More generally, to factor a polynomial of degree n over the finite field F q with q elements, the algorithms use O(n 1.815 log q) arithmetic operations in F q . The new baby step/giant step techniques used in our algorithms also yield new fast practical algorithms at super-quadratic asymptotic running time, and subquadratic-time methods for manipulating normal bases of finite fields.

[1]  Charles M. Fiduccia On the algebraic complexity of matrix multiplication. , 1973 .

[2]  Donald E. Knuth,et al.  The Art of Computer Programming, Vol. 2 , 1981 .

[3]  E. Berlekamp Factoring polynomials over large finite fields* , 1970, SYMSAC '71.

[4]  Rudolf Lide,et al.  Finite fields , 1983 .

[5]  Mark Giesbrecht,et al.  Nearly Optimal Algorithms for Canonical Matrix Forms , 1995, SIAM J. Comput..

[6]  Victor Shoup On the Deterministic Complexity of Factoring Polynomials over Finite Fields , 1990, Inf. Process. Lett..

[7]  D. Cantor,et al.  A new algorithm for factoring polynomials over finite fields , 1981 .

[8]  Victor Shoup,et al.  Fast construction of irreducible polynomials over finite fields , 1994, SODA '93.

[9]  Michael O. Rabin,et al.  Probabilistic Algorithms in Finite Fields , 1980, SIAM J. Comput..

[10]  Joachim von zur Gathen,et al.  Constructing Normal Bases in Finite Fields , 1990, J. Symb. Comput..

[11]  Harald Niederreiter,et al.  Factorization of Polynomials over Finite Fields and Characteristic Sequences , 1993, J. Symb. Comput..

[12]  Victor Y. Pan,et al.  Fast rectangular matrix multiplications and improving parallel matrix computations , 1997, PASCO '97.

[13]  Štefan Schwarz,et al.  ON THE REDUCTIBILITY OF POLYNOMIALS OVER A FINITE FIELD , 1956 .

[14]  Charles M. Fiduccia On Obtaining Upper Bounds on the Complexity of Matrix Multiplication , 1972, Complexity of Computer Computations.

[15]  James L. Massey,et al.  Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.

[16]  Michael Clausen,et al.  Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.

[17]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[18]  S. Linnainmaa Taylor expansion of the accumulated rounding error , 1976 .

[19]  David G. Kirkpatrick,et al.  Addition Requirements for Matrix and Transposed Matrix Products , 1988, J. Algorithms.

[20]  H. T. Kung,et al.  Fast Algorithms for Manipulating Formal Power Series , 1978, JACM.

[21]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[22]  Jean Louis Dornstetter On the equivalence between Berlekamp's and Euclid's algorithms , 1987, IEEE Trans. Inf. Theory.

[23]  David Y. Y. Yun,et al.  Fast Solution of Toeplitz Systems of Equations and Computation of Padé Approximants , 1980, J. Algorithms.

[24]  Peter Fleischmann Connections between the algorithms of Berlekamp and Niederreiter for factoring polynomials over Fq , 1993 .

[25]  Erich Kaltofen,et al.  Factoring high-degree polynomials by the black box Berlekamp algorithm , 1994, ISSAC '94.

[26]  Douglas H. Wiedemann Solving sparse linear equations over finite fields , 1986, IEEE Trans. Inf. Theory.

[27]  Walter Baur,et al.  The Complexity of Partial Derivatives , 1983, Theor. Comput. Sci..

[28]  Grazia Lotti,et al.  On the Asymptotic Complexity of Rectangular Matrix Multiplication , 1983, Theor. Comput. Sci..

[29]  Victor Shoup,et al.  A New Polynomial Factorization Algorithm and its Implementation , 1995, J. Symb. Comput..

[30]  Don Coppersmith Rapid Multiplication of Rectangular Matrices , 1982, SIAM J. Comput..

[31]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .