Multi-functionality and biodiversity in arbuscular mycorrhizas.

[1]  A. Fitter,et al.  Diversity of fungal symbionts in arbuscular mycorrhizas from a natural community , 1995 .

[2]  A. Fitter,et al.  Phosphorus and carbon budgets: mycorrhizal contribution in Hyacinthoides non-scripta (L.) Chouard ex Rothm. under natural conditions , 1995 .

[3]  A. Watkinson,et al.  Root Pathogenic and Arbuscular Mycorrhizal Fungi Determine Fecundity of Asymptomatic Plants in the Field , 1994 .

[4]  H. West,et al.  Interactions between arbuscular mycorrhizal fungi and foliar-feeding insects in Plantago lanceolata L. , 1994, The New phytologist.

[5]  V. Brown,et al.  Reduction of black vine weevil larval growth by vesicular‐arbuscular mycorrhizal infection , 1994 .

[6]  J. Barea,et al.  Improved nitrogen uptake and transport from 15N‐labelled nitrate by external hyphae of arbuscular mycorrhiza under water‐stressed conditions , 1994 .

[7]  I. Jakobsen,et al.  Symbiotic exchange of carbon and phosphorus between cucumber and three arbuscular mycorrhizal fungi , 1993 .

[8]  H. West,et al.  Response of Vulpia ciliata ssp. ambigua to removal of mycorrhizal infection and to phosphate application under natural conditions , 1993 .

[9]  J. Bousquet,et al.  Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants , 1993, Nature.

[10]  S. Bentivenga,et al.  Germ plasm in the international collection of arbuscular and vesicular-arbuscular mycorrhizal fungi (INVAM) and procedures for culture development, documentation and storage , 1993 .

[11]  James F. Smith Phylogenetic Hypotheses for the Monocotyledons Constructed from rbc L Sequence Data , 1993 .

[12]  I. Jakobsen,et al.  External hyphae of vesicular arbuscular mycorrhizal fungi associated with trifolium subterraneum l. 1. spread of hyphae and phosphorus inflow into roots , 1992 .

[13]  B. Hetrick,et al.  Relationships of mycorrhizal symbiosis, rooting strategy, and phenology among tallgrass prairie forbs , 1992 .

[14]  B. Hetrick,et al.  Mycorrhizal dependence of modern wheat varieties, landraces, and ancestors , 1992 .

[15]  A. Fitter,et al.  The ecology and functioning of vesicular-arbuscular mycorrhizas in co-existing grassland species II. Nutrient uptake and growth of vesicular-arbuscular mycorrhizal plants in a semi-natural grassland , 1992 .

[16]  R. Augé,et al.  Mycorrhizal fungi and nonhydraulic root signals of soil drying. , 1991, Plant physiology.

[17]  A. Watkinson,et al.  Plant Population Ecology , 1990 .

[18]  A. Fitter The role of ecological significance of vesicular-arbuscular mycorrhizas in temperate ecosystems , 1990 .

[19]  G. Benny,et al.  Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order, Glomales, two new suborders, Glomineae and Gigasporineae, and two new families, Acaulosporaceae and Gigasporaceae, with an emendation of Glomaceae , 1990 .

[20]  J. Young,et al.  The evolution of specificity in the legume-rhizobium symbiosis. , 1989, Trends in ecology & evolution.

[21]  V. Gianinazzi-Pearson,et al.  Physiological Interactions Between Symbionts in Vesicular-Arbuscular Mycorrhizal Plants , 1988 .

[22]  G. Safir Ecophysiology of VA mycorrhizal plants , 1987 .

[23]  D. Read,et al.  The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. III: Protein utilization by Betula, Picea and Pinus in mycorrhizal association with Hebeloma crustuliniforme , 1986 .

[24]  D. Read,et al.  THE BIOLOGY OF MYCORRHIZA IN THE RICACEAE: IX. PEPTIDES AS NITROGEN SOURCES FOR THE ERICOID ENDOPHYTE AND FOR MYCORRHIZAL AND NON-MYCORRHIZAL PLANTS. , 1985, The New phytologist.

[25]  P. Tinker,et al.  INTERACTIONS OF VESICULAR-ARBUSCULAR MYCORRHIZAL INFECTIONS AND HEAVY METALS IN PLANTS. II. THE EFFECTS OF INFECTION ON UPTAKE OF COPPER , 1983 .

[26]  P. Tinker,et al.  INTERACTIONS OF VESICULAR‐ARBUSCULAR MYCORRHIZAL INFECTION AND HEAVY METALS IN PLANTS , 1983 .

[27]  R. J. Rayner New observations on Sawdonia ornata from Scotland , 1983, Transactions of the Royal Society of Edinburgh: Earth Sciences.

[28]  D. Read,et al.  The biology of mycorrhiza in the Ericaceae. VIII. The role of mycorrhizal infection in heavy metal resistance , 1982 .

[29]  Arthur Cronquist,et al.  Angiosperm Orders and Families. (Book Reviews: An Integrated System of Classification of Flowering Plants) , 1982 .

[30]  M. Allen,et al.  COMPARATIVE WATER RELATIONS AND PHOTOSYNTHESIS OF MYCORRHIZAL AND NON-MYCORRHIZAL BOUTELOUA GRACILIS H.B.K. LAG EX STEUD. , 1981 .

[31]  P. Tinker,et al.  IV. EFFECT OF ENVIRONMENTAL VARIABLES ON MOVEMENT OF PHOSPHORUS , 1981 .

[32]  T. V. John ROOT SIZE, ROOT HAIRS AND MYCORRHIZAL INFECTION: A RE-EXAMINATION OF BAYLIS'S HYPOTHESIS WITH TROPICAL TREES , 1980 .

[33]  R. Davis,et al.  Influence of Glomus fasciculatus and soil phosphorus on Phytophthora root rot of citrus. , 1980 .

[34]  H. Dehne,et al.  Untersuchungen zum Einfluß der endotrophen Mycorrhiza auf Pflanzenkrankheiten.: II. Phenolstoffwechsel und Lignifizierung , 1979 .

[35]  H. Dehne,et al.  Untersuchungen zum Einfluß der endotrophen Mycorrhiza auf Pflanzenkrankheiten , 1979 .

[36]  D. Malloch,et al.  The origin of land plants: a matter of mycotrophism. , 1975, Bio Systems.

[37]  P. Tinker,et al.  Phosphate flow into mycorrhizal roots , 1973 .

[38]  Thorsten Ahl,et al.  Pathogenic Root-Infecting Fungi , 1969 .