Pseudomomentum and material forces in nonlinear elasticity: variational formulations and application to brittle fracture

SummaryThis work examines critically the various formulations of the balance of linear momentum innonlinear inhomogeneous elasticity. The corresponding variational formulations are presented. From the point of view of the theory of elastic inhomogeneities, the most interesting formulations are those which, being either completely material or mixed-Eulerian, exhibit explicitly the inhomogeneities in the form ofmaterial forces. They correspond to the balance ofpseudomomentum, a material covector which is seldom used but which we show to play a fundamental role in the Hamiltonian canonical formulation of nonlinear elasticity. The flux associated with pseudomomentum is none other than theEshelby material tensor. Applying this formulation to the case of an elastic body containing a crack of finite extent, the notion of suction force acting at the tip of the crack follows while afracture criterion à la Griffith can be deduced from a variational inequality. Possible extensions to higher-grade elastic materials and inelastic materials are indicated as well as the role played by pseudomomentum in the quantization of elastic vibrations.

[1]  J. Rice,et al.  Conservation Laws and Energy-Release Rates , 1973 .

[2]  R. Batra The force on a lattice defect in an elastic body , 1987 .

[3]  G. Maugin,et al.  Basic equations for shocks in nonlinear electroelastic materials , 1989 .

[4]  G. Herrmann,et al.  Energy Release Rates and Related Balance Laws in Linear Elastic Defect Mechanics , 1987 .

[5]  J. D. Eshelby The elastic energy-momentum tensor , 1975 .

[6]  D. Edelen Aspects of variational arguments in the theory of elasticity: Fact and folklore , 1981 .

[7]  Jerrold E. Marsden,et al.  The Hamiltonian structure of nonlinear elasticity: The material and convective representations of solids, rods, and plates , 1988 .

[8]  Gérard A. Maugin,et al.  Continuum Mechanics of Electromagnetic Solids , 1989 .

[9]  G. Maugin Magnetized deformable media in general relativity , 1971 .

[10]  G. Maugin A continuum approach to magnon-phonon couplings—I: General equations, background solution , 1979 .

[11]  M. Epstein,et al.  The energy-momentum tensor and material uniformity in finite elasticity , 1990 .

[12]  J. D. Eshelby,et al.  The force on an elastic singularity , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[13]  A. G. Herrmann Material momentum tensor and path-independent integrals of fracture mechanics , 1982 .

[14]  Gérard A. Maugin,et al.  The method of virtual power in continuum mechanics: Application to coupled fields , 1980 .

[15]  P. Casal Interpretation of the Rice integral in continuum mechanics , 1978 .

[16]  H. Stumpf,et al.  Variational principles of nonlinear fracture mechanics , 1990 .

[17]  M. Gurtin,et al.  On the energy release rate in elastodynamic crack propagation , 1980 .

[18]  J. L. Sanders On the Griffith-Irwin Fracture Theory , 1960 .

[19]  David Lovelock,et al.  Tensors, differential forms, and variational principles , 1975 .

[20]  H. D. Bui,et al.  Mécanique de la rupture fragile , 1978 .

[21]  Darryl D. Holm,et al.  Poisson brackets and clebsch representations for magnetohydrodynamics, multifluid plasmas, and elasticity , 1983 .

[22]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[23]  J. D. Eshelby The Continuum Theory of Lattice Defects , 1956 .

[24]  A. G. Herrmann On conservation laws of continuum mechanics , 1981 .

[25]  C. Truesdell,et al.  The Classical Field Theories , 1960 .

[26]  G. Maugin,et al.  Electroacoustic equations for one‐domain ferroelectric bodies , 1980 .

[27]  G. Maugin A continuum approach to magnon-phonon couplings—II: Wave propagation for hexagonal symmetry , 1979 .

[28]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[29]  R. Ogden Non-Linear Elastic Deformations , 1984 .

[30]  B. Podolsky A Generalized Electrodynamics Part I—Non-Quantum , 1942 .

[31]  Donald Frederick Nelson,et al.  Electric, optic, and acoustic interactions in dielectrics , 1979 .

[32]  G. Maugin The Thermomechanics of Plasticity and Fracture , 1992 .

[33]  M. Epstein,et al.  The electroelastic energy–momentum tensor , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[34]  J. Meixner,et al.  S. Flügge, Herausgeber: Handbuch der Physik, Band III/3: Die nicht‐linearen Feldtheorien der Mechanik. Von C. Truesdell und W. Noll. Springer‐Verlag, Berlin/Heidelberg/New York 1965. VIII/602 Seiten. Preis: 198,‐ DM , 1967, Berichte der Bunsengesellschaft für physikalische Chemie.

[35]  G. P. Cherepanov Crack propagation in continuous media , 1967 .

[36]  E. Suhubi Conservation laws in nonlinear elastodynamics , 1989 .