Water-soluble thin film transistors and circuits based on amorphous indium-gallium-zinc oxide.

This paper presents device designs, circuit demonstrations, and dissolution kinetics for amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFTs) comprised completely of water-soluble materials, including SiNx, SiOx, molybdenum, and poly(vinyl alcohol) (PVA). Collections of these types of physically transient a-IGZO TFTs and 5-stage ring oscillators (ROs), constructed with them, show field effect mobilities (∼10 cm2/Vs), on/off ratios (∼2×10(6)), subthreshold slopes (∼220 mV/dec), Ohmic contact properties, and oscillation frequency of 5.67 kHz at supply voltages of 19 V, all comparable to otherwise similar devices constructed in conventional ways with standard, nontransient materials. Studies of dissolution kinetics for a-IGZO films in deionized water, bovine serum, and phosphate buffer saline solution provide data of relevance for the potential use of these materials and this technology in temporary biomedical implants.

[1]  Romuald Houdré,et al.  Correction: Corrigendum: All-optical polariton transistor , 2014, Nature Communications.

[2]  Yeon-Gon Mo,et al.  High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper , 2007 .

[3]  H. Nakajima,et al.  Correlation of cytotoxicity with element release from mercury- and gallium-based dental alloys in vitro. , 1994, Dental materials : official publication of the Academy of Dental Materials.

[4]  S. Bauer,et al.  Biocompatible and Biodegradable Materials for Organic Field‐Effect Transistors , 2010 .

[5]  D. E. Carter,et al.  Comparative pulmonary toxicity of gallium arsenide, gallium(III) oxide, or arsenic(III) oxide intratracheally instilled into rats. , 1986, Toxicology and applied pharmacology.

[6]  Yonggang Huang,et al.  Transient, biocompatible electronics and energy harvesters based on ZnO. , 2013, Small.

[7]  Dietmar W. Hutmacher,et al.  Scaffold design and fabrication technologies for engineering tissues — state of the art and future perspectives , 2001, Journal of biomaterials science. Polymer edition.

[8]  Yonggang Huang,et al.  Dissolvable Metals for Transient Electronics , 2014 .

[9]  Yeon-Gon Mo,et al.  Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment , 2007 .

[10]  Xian Huang,et al.  Materials for Bioresorbable Radio Frequency Electronics , 2013, Advanced materials.

[11]  H. Krebs Chemical composition of blood plasma and serum. , 1950, Annual review of biochemistry.

[12]  Xian Huang,et al.  High‐Performance Biodegradable/Transient Electronics on Biodegradable Polymers , 2014, Advanced materials.

[13]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[14]  Yonggang Huang,et al.  Dissolution chemistry and biocompatibility of single-crystalline silicon nanomembranes and associated materials for transient electronics. , 2014, ACS nano.

[15]  Jie Wu,et al.  46.3: Development of Source/Drain Electrodes for Amorphous Indium Gallium Zinc Oxide Thin Film Transistors , 2013 .

[16]  G. Tröster,et al.  Wafer-scale design of lightweight and transparent electronics that wraps around hairs , 2014, Nature Communications.

[17]  H. Ohta,et al.  Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.

[18]  Xue Shenwu Synthesis , characterization , biodegradation , and drug delivery application of biodegradable lactic / glycolic acid polymers . Part II : Biodegradation , 2005 .

[19]  Xiaolin Zheng,et al.  Fabrication of nanowire electronics on nonconventional substrates by water-assisted transfer printing method. , 2011, Nano letters.

[20]  Jie Wu,et al.  Development of Source / Drain Electrodes for Amorphous Indium Gallium Zinc Oxide Thin Film Transistors , 2013 .

[21]  S. Leonard,et al.  Cytotoxicity and Characterization of Particles Collected From an Indium–Tin Oxide Production Facility , 2014, Journal of toxicology and environmental health. Part A.

[22]  D. Hutmacher,et al.  The return of a forgotten polymer : Polycaprolactone in the 21st century , 2009 .

[23]  V. John,et al.  In vitro degradation and release characteristics of spin coated thin films of PLGA with a “breath figure” morphology , 2012, Biomatter.

[24]  Li Li,et al.  A review on biodegradable polymeric materials for bone tissue engineering applications , 2009 .

[25]  Huanyu Cheng,et al.  Dissolution Behaviors and Applications of Silicon Oxides and Nitrides in Transient Electronics , 2014 .

[26]  Hirenkumar K. Makadia,et al.  Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. , 2011, Polymers.

[27]  Sang Youn Han,et al.  Solution-processed single-walled carbon nanotube field effect transistors and bootstrapped inverters for disintegratable, transient electronics , 2014 .

[28]  C. Demerlis,et al.  Review of the oral toxicity of polyvinyl alcohol (PVA). , 2003, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[29]  Z. Bao,et al.  Organic Thin‐Film Transistors Fabricated on Resorbable Biomaterial Substrates , 2010, Advanced materials.

[30]  M. Branica,et al.  BEHAVIOR OF INDIUM IN SEAWATER (A PRELIMINARY STUDY) , 1969 .

[31]  H. Nakajima,et al.  Behavior of pure gallium in water and various saline solutions. , 1997, Dental materials journal.

[32]  T. Chang,et al.  A Deep UV Sensitive TFT , 2011 .

[33]  Jae-Woong Jeong,et al.  Materials and Fabrication Processes for Transient and Bioresorbable High‐Performance Electronics , 2013 .

[34]  Neal R Armstrong,et al.  Modification of Transparent Conducting Oxide (TCO) Electrodes through Silanization and Chemisorption of Small Molecules , 2007 .

[35]  Mihai Irimia-Vladu,et al.  “Green” Electronics: Biodegradable and Biocompatible Materials and Devices for Sustainable Future , 2014 .

[36]  Zhong Lin Wang,et al.  Cellular level biocompatibility and biosafety of ZnO nanowires , 2008 .

[37]  Shin Min Kang,et al.  CMOS Digital Integrated Cir-cuits: Analysis and Design , 2002 .

[38]  Jae Cheol Lee,et al.  Highly Stable Ga2O3-In2O3-ZnO TFT for Active-Matrix Organic Light-Emitting Diode Display Application , 2006, 2006 International Electron Devices Meeting.

[39]  Il-Doo Kim,et al.  Amorphous InGaZnO4 films: Gas sensor response and stability , 2012 .

[40]  Dietmar W Hutmacher,et al.  Dynamics of in vitro polymer degradation of polycaprolactone-based scaffolds: accelerated versus simulated physiological conditions , 2008, Biomedical materials.

[41]  M. Nicholas,et al.  The elevated temperature strengths of alumina-aluminium and magnesium-aluminium samples , 1979 .

[42]  Gaio Paradossi,et al.  Poly(vinyl alcohol) as versatile biomaterial for potential biomedical applications , 2003, Journal of materials science. Materials in medicine.

[43]  Huanyu Cheng,et al.  A Physically Transient Form of Silicon Electronics , 2012, Science.

[44]  S. J. Chang,et al.  A Deep UV Sensitive ${\rm Ta}_{2}{\rm O}_{5}/{\rm a-IGZO}$ TFT , 2011, IEEE Sensors Journal.

[45]  Kyung Mi Lee 25th Anniversary Article: Materials for High‐Performance Biodegradable Semiconductor Devices , 2014 .