What is the dimension of citation space?

Citation networks represent the flow of information between agents. They are constrained in time and so form directed acyclic graphs which have a causal structure. Here we provide novel quantitative methods to characterise that structure by adapting methods used in the causal set approach to quantum gravity by considering the networks to be embedded in a Minkowski spacetime and measuring its dimension using Myrheim–Meyer and Midpoint-scaling estimates. We illustrate these methods on citation networks from the arXiv, supreme court judgements from the USA, and patents and find that otherwise similar citation networks have measurably different dimensions. We suggest that these differences can be interpreted in terms of the level of diversity or narrowness in citation behaviour.

[1]  J. Fowler,et al.  Distance Measures for Dynamic Citation Networks , 2009, 0909.1819.

[2]  Alfred V. Aho,et al.  The Transitive Reduction of a Directed Graph , 1972, SIAM J. Comput..

[3]  Gregory,et al.  Structure of random discrete spacetime. , 1990, Physical review letters.

[4]  et al.,et al.  Measurement of the B0-B0 mixing rate with B0(B0)→D*∓π± partial reconstruction , 2002 .

[5]  Hsien-Kuei Kwang,et al.  Asymptotic Expansions for the Stirling Numbers of the First Kind , 1995, J. Comb. Theory, Ser. A.

[6]  Robert L. Goldstone,et al.  The simultaneous evolution of author and paper networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Petter Holme,et al.  Modeling scientific-citation patterns and other triangle-rich acyclic networks , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Derek de Solla Price,et al.  A general theory of bibliometric and other cumulative advantage processes , 1976, J. Am. Soc. Inf. Sci..

[9]  D. Meyer The dimension of causal sets , 1988 .

[10]  James H. Fowler,et al.  Abstract Available online at www.sciencedirect.com Social Networks 30 (2008) 16–30 The authority of Supreme Court precedent , 2022 .

[11]  Tim S. Evans,et al.  Transitive Reduction of Citation Networks , 2013, J. Complex Networks.

[12]  C. Tsallis,et al.  Are citations of scientific papers a case of nonextensivity? , 1999, cond-mat/9903433.

[13]  M. V. Simkin,et al.  A mathematical theory of citing , 2007 .

[14]  B. Bollobás,et al.  The longest chain among random points in Euclidean space , 1988 .

[15]  Herbert S. Wilf The Asymptotic Behavior of the Stirling Numbers of the First Kind , 1993, J. Comb. Theory, Ser. A.

[16]  Stefan Felsner,et al.  Finite three dimensional partial orders which are not sphere orders , 1999, Discret. Math..

[17]  Luciano da Fontoura Costa,et al.  Three-feature model to reproduce the topology of citation networks and the effects from authors' visibility on their h-index , 2012, J. Informetrics.

[18]  Lutz Bornmann,et al.  Universality of citation distributions-A validation of Radicchi et al.'s relative indicator cf = c/c0 at the micro level using data from chemistry , 2009, J. Assoc. Inf. Sci. Technol..

[19]  Amin Vahdat,et al.  Hyperbolic Geometry of Complex Networks , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Tommaso Bolognesi,et al.  Simple indicators for Lorentzian causets , 2014, 1407.1649.

[21]  Marián Boguñá,et al.  Network Cosmology , 2012, Scientific Reports.

[22]  P. Winkler Random orders , 1985 .

[23]  Henrik Jeldtoft Jensen,et al.  Stochastic Dynamics of Complex Systems - From Glasses to Evolution , 2013, Series on Complexity Science.

[24]  Dalibor Fiala,et al.  Network-based statistical comparison of citation topology of bibliographic databases , 2014, Scientific Reports.

[25]  Raluca Ilie,et al.  A numerical study of the correspondence between paths in a causal set and geodesics in the continuum , 2006 .

[26]  T. S. Evans,et al.  Universality of performance indicators based on citation and reference counts , 2011, Scientometrics.

[27]  M. Newman,et al.  Why social networks are different from other types of networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Yan Wu,et al.  Generalized preferential attachment considering aging , 2014, J. Informetrics.

[29]  Elizabeth S. Vieira,et al.  Citations to scientific articles: Its distribution and dependence on the article features , 2010, J. Informetrics.

[30]  D J PRICE,et al.  NETWORKS OF SCIENTIFIC PAPERS. , 1965, Science.

[31]  Dmitri Krioukov,et al.  Duality between equilibrium and growing networks. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Marc Barthelemy,et al.  Spatial Networks , 2010, Encyclopedia of Social Network Analysis and Mining.

[33]  Joe Henson Discovering the Discrete Universe , 2010 .

[34]  Renaud Lambiotte,et al.  Uncovering space-independent communities in spatial networks , 2010, Proceedings of the National Academy of Sciences.

[35]  Vwani P. Roychowdhury,et al.  Read Before You Cite! , 2003, Complex Syst..

[36]  Marián Boguñá,et al.  Self-similarity of complex networks and hidden metric spaces , 2007, Physical review letters.

[37]  Dongyun Yi,et al.  Modeling the Citation Network by Network Cosmology , 2015, PloS one.

[38]  Marta Sales-Pardo,et al.  Statistical validation of a global model for the distribution of the ultimate number of citations accrued by papers published in a scientific journal , 2010, J. Assoc. Inf. Sci. Technol..

[39]  C. J. Carstens,et al.  A uniform random graph model for directed acyclic networks and its effect on motif-finding , 2014, J. Complex Networks.

[40]  Lutz Bornmann,et al.  What do citation counts measure? A review of studies on citing behavior , 2008, J. Documentation.

[41]  Xueqi Cheng,et al.  Modeling the clustering in citation networks , 2011, ArXiv.

[42]  Zheng Xie,et al.  A random geometric graph built on a time-varying Riemannian manifold , 2015 .

[43]  Diana Lucio-Arias,et al.  Main-path analysis and path-dependent transitions in HistCite™-based historiograms , 2008 .

[44]  Terrence A. Brooks,et al.  Evidence of complex citer motivations , 1986, J. Am. Soc. Inf. Sci..

[45]  Claudio Castellano,et al.  Universality of citation distributions: Toward an objective measure of scientific impact , 2008, Proceedings of the National Academy of Sciences.

[46]  Peter Martin Introduction to Basic Legal Citation , 2013 .

[47]  Anthony Bonato,et al.  Dimensionality of Social Networks Using Motifs and Eigenvalues , 2014, PloS one.

[48]  S. Havlin,et al.  Dimension of spatially embedded networks , 2011 .

[49]  S. Redner How popular is your paper? An empirical study of the citation distribution , 1998, cond-mat/9804163.

[50]  Lutz Bornmann,et al.  Universality of citation distributions–A validation of Radicchi et al.'s relative indicator c f = c-c 0 at the micro level using data from chemistry , 2009 .

[51]  G. Brightwell,et al.  Counting linear extensions , 1991 .

[52]  C. Peterson,et al.  Topological properties of citation and metabolic networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  O. Shanker Complex network dimension and path counts , 2010, Theor. Comput. Sci..

[54]  Marcello Mamino,et al.  Duality between preferential attachment and static networks on hyperbolic spaces , 2013, 1310.8321.

[55]  Tim S. Evans,et al.  Modelling citation networks , 2014, Scientometrics.

[56]  S. Havlin,et al.  How to calculate the fractal dimension of a complex network: the box covering algorithm , 2007, cond-mat/0701216.

[57]  Alan L. Mackay,et al.  Publish or perish , 1974, Nature.

[58]  Vwani P. Roychowdhury,et al.  Stochastic modeling of citation slips , 2004, Scientometrics.

[59]  David D. Reid Manifold dimension of a causal set: Tests in conformally flat spacetimes , 2003 .

[60]  A. D. Jackson,et al.  Citation networks in high energy physics. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  B. Bollobás,et al.  Box-spaces and random partial orders , 1991 .

[62]  Astrid Eichhorn,et al.  Spectral dimension in causal set quantum gravity , 2013, 1311.2530.

[63]  Samee U. Khan,et al.  A literature review on the state-of-the-art in patent analysis , 2014 .

[64]  Bombelli,et al.  Space-time as a causal set. , 1987, Physical review letters.

[65]  Santo Fortunato,et al.  Characterizing and Modeling Citation Dynamics , 2011, PloS one.

[66]  Fay Dowker Causal sets as discrete spacetime , 2006 .

[67]  L. Freeman Spheres, cubes and boxes: Graph dimensionality and network structure , 1983 .