Why Computational Complexity Requires Stricter Martingales

The word "martingale" has related, but different, meanings in probability theory and theoretical computer science. In computational complexity and algorithmic information theory,a martingale is typically a function d on strings such that E(d(wb)|w) = d(w) for all strings w, where the conditional expectation is computed over all possible values of the next symbol b. In modern probability theory a martingale is typically a sequence ?0, ?1, ?2, . . . of random variables such that E(?n+1|?0, . . . , ?n) = ?n for all n.This paper elucidates the relationship between these notions and proves that the latter notion is too weak for many purposes in computational complexity,b ecause under this definition every computable martingale can be simulated by a polynomial-time computable martingale.

[1]  Sheldon M. Ross,et al.  Stochastic Processes , 2018, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.

[2]  Jack H. Lutz Resource-bounded measure , 1998, Proceedings. Thirteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat. No.98CB36247).

[3]  Jean-Luc Ville Étude critique de la notion de collectif , 1939 .

[4]  Jack H. Lutz,et al.  The quantitative structure of exponential time , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[5]  Per Martin-Löf,et al.  The Definition of Random Sequences , 1966, Inf. Control..

[6]  Jack H. Lutz,et al.  Recursive Computational Depth , 1999, Inf. Comput..

[7]  Rajeev Motwani,et al.  Randomized algorithms , 1996, CSUR.

[8]  Sheldon M. Ross,et al.  VII – Bandit Processes , 1983 .

[9]  C. Schnorr Zufälligkeit und Wahrscheinlichkeit , 1971 .

[10]  J. Doob Regularity properties of certain families of chance variables , 1940 .

[11]  P. Levy Théorie de l'addition des variables aléatoires , 1955 .

[12]  R. Durrett Essentials of Stochastic Processes , 1999 .

[13]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[14]  Claus-Peter Schnorr,et al.  Process complexity and effective random tests , 1973 .

[15]  Jack H. Lutz Almost Everywhere High Nonuniform Complexity , 1992, J. Comput. Syst. Sci..

[16]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.

[17]  J. Doob Stochastic processes , 1953 .

[18]  C. Schnorr Klassifikation der Zufallsgesetze nach Komplexität und Ordnung , 1970 .

[19]  Kai Lai Chung,et al.  A Course in Probability Theory , 1949 .