Comparing Absolute and relative Gromov--Witten invariants

This note compares the usual (absolute) Gromov-Witten invariants of a symplectic manifold with the invariants that count the curves relative to a (symplectic) divisor D. We give explicit examples where these invariants differ even though it seems at first that they should agree, for example when counting genus zero curves in a class \be such that \be\cdot D=0. The main tool is the decomposition formula in the form developed by A. Li--Ruan.

[1]  Hsin-Hong Lai Gromov–Witten invariants of blow-ups along submanifolds with convex normal bundles , 2007, 0710.3968.

[2]  A. Zinger A Comparison Theorem for Gromov-Witten Invariants in the Symplectic Category , 2008, 0807.0805.

[3]  Y. Ruan,et al.  Positive divisors in symplectic geometry , 2008, 0802.0590.

[4]  Tian-Jun Li,et al.  Birational cobordism invariance of uniruled symplectic manifolds , 2006, math/0611592.

[5]  Tian-Jun Li,et al.  Uniruled Symplectic Divisors , 2007, 0711.4254.

[6]  D. Mcduff HAMILTONIAN S 1 -MANIFOLDS ARE UNIRULED , 2007, 0706.0675.

[7]  E. Zehnder,et al.  A general Fredholm theory I: A splicing-based differential geometry , 2006, math/0612604.

[8]  H. Hofer A General Fredholm Theory and Applications , 2005, math/0509366.

[9]  R. Pandharipande,et al.  A topological view of Gromov-Witten theory , 2004, math/0412503.

[10]  S. Tolman,et al.  Topological properties of Hamiltonian circle actions , 2004, math/0404338.

[11]  Dusa McDuff,et al.  J-Holomorphic Curves and Symplectic Topology , 2004 .

[12]  E. Zehnder,et al.  Compactness results in Symplectic Field Theory , 2003, math/0308183.

[13]  A. Zinger Enumerative vs.\ symplectic invariants and obstruction bundles , 2002, math/0201255.

[14]  R. Pandharipande,et al.  A reconstruction theorem in quantum cohomology and quantum K-theory , 2001, math/0104084.

[15]  Thomas H. Parker,et al.  The symplectic sum formula for Gromov–Witten invariants , 2000, 1510.06943.

[16]  D. Mcduff Almost complex structures on S2\×S2 , 2000 .

[17]  D. Mcduff Quantum Homology of fibrations over $S^2$ , 1999, math/9905092.

[18]  Jianxun Hu Gromov-Witten invariants of blow-ups along points and curves , 1998, math/9810081.

[19]  An-Min Li,et al.  Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds , 1998, math/9803036.

[20]  Tian-Jun Li,et al.  Symplectic structure on ruled surfaces and a generalized adjunction formula , 1995 .