A Class of Recursive Optimal Stopping Problems with Applications to Stock Trading

In this paper we introduce and solve a class of optimal stopping problems of recursive type. In particular, the stopping payoff depends directly on the value function of the problem itself. In a multi-dimensional Markovian setting we show that the problem is well posed, in the sense that the value is indeed the unique solution to a fixed point problem in a suitable space of continuous functions, and an optimal stopping time exists. The set-up and methodology are sufficiently general to allow the analysis of problems with both finite-time and infinite-time horizon. Finally we apply our class of problems to a model for stock trading in two different market venues and we determine the optimal stopping rule in that case.

[1]  Alʹbert Nikolaevich Shiri︠a︡ev,et al.  Optimal stopping rules , 1977 .

[2]  Savas Dayanik,et al.  On the optimal stopping problem for one-dimensional diffusions , 2003 .

[3]  A. Friedman Variational principles and free-boundary problems , 1982 .

[4]  Ravi P. Agarwal,et al.  The One-Dimensional Heat Equation , 2009 .

[5]  Hans Degryse,et al.  Shedding Light on Dark Liquidity Pools , 2008 .

[6]  Larry G. Epstein,et al.  Stochastic differential utility , 1992 .

[7]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[8]  N. Krylov Controlled Diffusion Processes , 1980 .

[9]  Larry G. Epstein,et al.  Substitution, Risk Aversion, and the Temporal Behavior of Consumption and Asset Returns: A Theoretical Framework , 1989 .

[10]  Peter Kratz,et al.  Portfolio Liquidation in Dark Pools in Continuous Time , 2015 .

[11]  M. K. Bhasin Do Dark Pools Harm Price Discovery , 2014 .

[12]  Erhan Bayraktar,et al.  The Effects of Implementation Delay on Decision-Making Under Uncertainty , 2007 .

[13]  Hitesh Mittal,et al.  Are You Playing in a Toxic Dark Pool? , 2008 .

[14]  R. Carmona,et al.  OPTIMAL MULTIPLE STOPPING AND VALUATION OF SWING OPTIONS , 2008 .

[15]  B. Reider Substitution , 1898, The Dental register.

[16]  A. Borodin,et al.  Handbook of Brownian Motion - Facts and Formulae , 1996 .

[17]  Alʹbert Nikolaevich Shiri︠a︡ev,et al.  Optimal Stopping and Free-Boundary Problems , 2006 .

[18]  Haoxiang Zhu Do Dark Pools Harm Price Discovery? , 2013 .

[19]  Peter Kratz,et al.  OPTIMAL LIQUIDATION AND ADVERSE SELECTION IN DARK POOLS , 2018 .

[20]  M. Manhart,et al.  Markov Processes , 2018, Introduction to Stochastic Processes and Simulation.

[21]  E. Prescott,et al.  Investment Under Uncertainty , 1971 .

[22]  Bernt Øksendal,et al.  OPTIMAL STOPPING WITH DELAYED INFORMATION , 2005 .

[23]  Albert N. Shiryaev,et al.  Optimal Stopping Rules , 2011, International Encyclopedia of Statistical Science.

[24]  David C. Brown,et al.  Dark Pool Exclusivity Matters , 2013 .

[25]  Agnès Sulem,et al.  Explicit Solution of Inventory Problems with Delivery Lags , 1995, Math. Oper. Res..

[26]  E. B. Dynkin,et al.  Markov processes; theorems and problems , 2013 .

[27]  Kuzman Ganchev,et al.  Censored exploration and the dark pool problem , 2009, UAI.

[28]  Xiongzhi Chen Brownian Motion and Stochastic Calculus , 2008 .

[29]  P. Protter Stochastic integration and differential equations , 1990 .

[30]  Jukka Lempa Optimal stopping with random exercise lag , 2012, Math. Methods Oper. Res..

[31]  Sebastian Jaimungal,et al.  Algorithmic and High-Frequency Trading , 2015 .

[32]  Yerkin Kitapbayev,et al.  On the Optimal Exercise Boundaries of Swing Put Options , 2014, Math. Oper. Res..

[33]  Ingrid M. Werner,et al.  Dark Pool Trading Strategies, Market Quality and Welfare , 2017 .

[34]  S. Shreve,et al.  Methods of Mathematical Finance , 2010 .

[35]  Avner Friedman,et al.  Parabolic variational inequalities in one space dimension and smoothness of the free boundary , 1975 .