Option Pricing with Asymmetric Heteroskedastic Normal Mixture Models

This paper uses asymmetric heteroskedastic normal mixture models to fit return data and to price options. The models can be estimated straightforwardly by maximum likelihood, have high statistical fit when used on S&P 500 index return data, and allow for substantial negative skewness and time varying higher order moments of the risk neutral distribution. When forecasting out-of-sample a large set of index options between 1996 and 2009, substantial improvements are found compared to several benchmark models in terms of dollar losses and the ability to explain the smirk in implied volatilities. Overall, the dollar root mean squared error of the best performing benchmark component model is 39% larger than for the mixture model. When considering the recent financial crisis this difference increases to 69%.

[1]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[2]  P. Billingsley,et al.  Probability and Measure , 1980 .

[3]  Stanley J. Kon Models of Stock Returns—A Comparison , 1984 .

[4]  Louis O. Scott Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application , 1987, Journal of Financial and Quantitative Analysis.

[5]  James B. Wiggins Option values under stochastic volatility: Theory and empirical estimates , 1987 .

[6]  P. Boothe,et al.  The statistical distribution of exchange rates: Empirical evidence and economic implications , 1987 .

[7]  D. Shanno,et al.  Option Pricing when the Variance Is Changing , 1987, Journal of Financial and Quantitative Analysis.

[8]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[9]  Alan L. Tucker,et al.  The Probability Distribution of Foreign Exchange Price Changes: Tests of Candidate Processes , 1988 .

[10]  Daniel B. Nelson CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .

[11]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[12]  Kaushik I. Amin,et al.  Option Valuation with Systematic Stochastic Volatility , 1993 .

[13]  L. Glosten,et al.  On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .

[14]  Dongcheol Kim,et al.  Alternative Models for the Conditional Heteroscedasticity of Stock Returns , 1994 .

[15]  J. Davidson Stochastic Limit Theory , 1994 .

[16]  B. Hansen Autoregressive Conditional Density Estimation , 1994 .

[17]  J. Duan THE GARCH OPTION PRICING MODEL , 1995 .

[18]  Ming-Shiun Pan,et al.  The distribution of currency futures price changes: A two-piece mixture of normals approach , 1995 .

[19]  Stephen Gray Modeling the Conditional Distribution of Interest Rates as a Regime-Switching Process , 1996 .

[20]  Saikat Nandi Pricing and hedging index options under stochastic volatility: an empirical examination , 1996 .

[21]  Christian Gourieroux,et al.  Simulation-based econometric methods , 1996 .

[22]  Gurdip Bakshi,et al.  Empirical Performance of Alternative Option Pricing Models , 1997 .

[23]  Campbell R. Harvey,et al.  Autoregressive conditional skewness , 1999 .

[24]  E. Ghysels,et al.  A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation , 2000 .

[25]  S. Heston,et al.  A Closed-Form GARCH Option Valuation Model , 2000 .

[26]  David S. Bates Post-'87 crash fears in the S&P 500 futures option market , 2000 .

[27]  W. Li,et al.  On a mixture autoregressive model , 2000 .

[28]  J. Huriot,et al.  Economics of Cities , 2000 .

[29]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[30]  N. Shephard,et al.  Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics , 2001 .

[31]  James Renegar,et al.  A mathematical view of interior-point methods in convex optimization , 2001, MPS-SIAM series on optimization.

[32]  Wai Keung Li,et al.  On a Mixture Autoregressive Conditional Heteroscedastic Model , 2001 .

[33]  M. Yor,et al.  Stochastic Volatility for Lévy Processes , 2003 .

[34]  Daniel Bienstock,et al.  Potential Function Methods for Approximately Solving Linear Programming Problems: Theory and Practice , 2002 .

[35]  Jun Pan The jump-risk premia implicit in options: evidence from an integrated time-series study $ , 2002 .

[36]  P. Carr,et al.  Time-Changed Levy Processes and Option Pricing ⁄ , 2002 .

[37]  Peter Christoffersen,et al.  Série Scientifique Scientific Series Option Valuation with Conditional Skewness Option Valuation with Conditional Skewness , 2022 .

[38]  David S. Bates Empirical option pricing: a retrospection , 2003 .

[39]  Luc Bauwens,et al.  Bayesian Clustering of Many Garch Models , 2003 .

[40]  Eric Jondeau,et al.  Conditional volatility, skewness, and kurtosis: existence, persistence, and comovements , 2003 .

[41]  Kris Jacobs,et al.  Which GARCH Model for Option Valuation? , 2004, Manag. Sci..

[42]  P. Carr,et al.  Stochastic Skew in Currency Options , 2004 .

[43]  Bjørn Eraker Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot and Option Prices , 2004 .

[44]  James D. Hamilton,et al.  Normalization in Econometrics , 2004 .

[45]  Marc S. Paolella,et al.  Mixed Normal Conditional Heteroskedasticity , 2004 .

[46]  Peter H. Ritchken,et al.  An empirical comparison of GARCH option pricing models , 2006 .

[47]  Lars Stentoft,et al.  Pricing American options when the underlying asset follows GARCH processes , 2005 .

[48]  R. C. Merton,et al.  Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[49]  Sylvia Frühwirth-Schnatter,et al.  Finite Mixture and Markov Switching Models , 2006 .

[50]  J. Gabszewicz La différenciation des produits , 2006 .

[51]  Jin-Chuan Duan,et al.  APPROXIMATING GARCH‐JUMP MODELS, JUMP‐DIFFUSION PROCESSES, AND OPTION PRICING , 2006 .

[52]  Jeroen V. K. Rombouts,et al.  Mixed Exponential Power Asymmetric Conditional Heteroskedasticity , 2007 .

[53]  Alain Monfort,et al.  Econometric specification of stochastic discount factor models , 2007 .

[54]  Laurence A. Wolsey,et al.  Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, 4th International Conference, CPAIOR 2007, Brussels, Belgium, May 23-26, 2007, Proceedings , 2007, CPAIOR.

[55]  Luc Bauwens,et al.  Theory and Inference for a Markov Switching GARCH Model , 2007 .

[56]  G. Durham SV mixture models with application to S&P 500 index returns ☆ , 2007 .

[57]  Peter F. Christoffersen,et al.  Option Valuation with Long-Run and Short-Run Volatility Components , 2008 .

[58]  Gurdip Bakshi,et al.  Stochastic Risk Premiums, Stochastic Skewness in Currency Options, and Stochastic Discount Factors in International Economies , 2006 .

[59]  Peter Christoffersen,et al.  Volatility Components, Affine Restrictions and Non-Normal Innovations , 2008 .

[60]  Jacques-François Thisse,et al.  Economic Geography: The Integration of Regions and Nations , 2008 .

[61]  Emese Lazar,et al.  Option Valuation with Normal Mixture GARCH Models , 2008 .

[62]  Peter Christoffersen,et al.  Exploring Time-Varying Jump Intensities: Evidence from S&P500 Returns and Options , 2009 .

[63]  Alain Monfort,et al.  Pricing and Inference with Mixtures of Conditionally Normal Processes , 2007 .

[64]  Bruno Feunou,et al.  Série Scientifique Scientific Series 2009 s-32 Option Valuation with Conditional Heteroskedasticity and Non-Normality , 2009 .

[65]  Elena Molis,et al.  The stability of the roommate problem revisited , 2010 .

[66]  Tom Truyts Signaling and Indirect Taxation , 2010 .

[67]  Jean-Charles Lange,et al.  Design of a network of reusable logistic containers , 2010 .

[68]  Peter Christoffersen,et al.  Volatility Components, Affine Restrictions, and Nonnormal Innovations , 2008 .

[69]  Paul Belleflamme,et al.  Industrial Organization: Markets and Strategies , 2010 .