meqsilhouette: a mm-VLBI observation and signal corruption simulator

The Event Horizon Telescope (EHT) aims to spatially resolve the silhouette (or shadow) of the supermassive black holes in the Galactic Centre (Sgr A$^\star$) and M87. The primary scientific objectives are to test general relativity in the strong-field regime and to probe accretion and jet-launch physics at event-horizon scales. This is made possible by the technique of Very Long Baseline Interferometry (VLBI) at (sub)millimetre wavelengths, which can achieve angular resolutions of order $\sim10~\mu$-arcsec. However, this approach suffers from unique observational challenges, including scattering in the troposphere and interstellar medium; rapidly time-variable source structure in both polarized and total intensity; as well as non-negligible antenna pointing errors. In this, the first paper in a series, we present the MeqSilhouette software package which is specifically designed to accurately simulate EHT observations. It includes realistic descriptions of a number of signal corruptions that can limit the ability to measure the key science parameters. This can be used to quantify calibration requirements, test parameter estimation and imaging strategies, and investigate systematic uncertainties that may be present. In doing so, a stronger link can be made between observational capabilities and theoretical predictions, with the goal of maximising scientific output from the upcoming order of magnitude increase in EHT sensitivity.

[1]  K. Bouman,et al.  HIGH-RESOLUTION LINEAR POLARIMETRIC IMAGING FOR THE EVENT HORIZON TELESCOPE , 2016, 1605.06156.

[2]  Kazunori Akiyama,et al.  MODELING SEVEN YEARS OF EVENT HORIZON TELESCOPE OBSERVATIONS WITH RADIATIVELY INEFFICIENT ACCRETION FLOW MODELS , 2016, 1602.07701.

[3]  Alan E. E. Rogers,et al.  PERSISTENT ASYMMETRIC STRUCTURE OF SAGITTARIUS A* ON EVENT HORIZON SCALES , 2016, 1602.05527.

[4]  L. Blackburn,et al.  THE INTRINSIC SHAPE OF SAGITTARIUS A* AT 3.5 mm WAVELENGTH , 2016, 1601.06571.

[5]  William T. Freeman,et al.  Computational Imaging for VLBI Image Reconstruction , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Stephanie Thalberg,et al.  Interferometry And Synthesis In Radio Astronomy , 2016 .

[7]  Urbana-Champaign,et al.  IMAGING AN EVENT HORIZON: MITIGATION OF SOURCE VARIABILITY OF SAGITTARIUS A* , 2015, 1512.08543.

[8]  Dimitrios Psaltis,et al.  A QUANTITATIVE TEST OF THE NO-HAIR THEOREM WITH Sgr A* USING STARS, PULSARS, AND THE EVENT HORIZON TELESCOPE , 2015, 1510.00394.

[9]  Michael D. Johnson,et al.  THEORY AND SIMULATIONS OF REFRACTIVE SUBSTRUCTURE IN RESOLVED SCATTER-BROADENED IMAGES , 2015, 1502.05722.

[10]  Victor Pankratius,et al.  IMAGING AN EVENT HORIZON: MITIGATION OF SCATTERING TOWARD SAGITTARIUS A* , 2014, 1409.4690.

[11]  M. Johnson,et al.  DISCOVERY OF SUBSTRUCTURE IN THE SCATTER-BROADENED IMAGE OF SGR A* , 2014, 1409.0530.

[12]  Charles F. Gammie,et al.  Observational appearance of inefficient accretion flows and jets in 3D GRMHD simulations: Application to Sagittarius A , 2014, 1408.4743.

[13]  Canada.,et al.  IMAGING THE SUPERMASSIVE BLACK HOLE SHADOW AND JET BASE OF M87 WITH THE EVENT HORIZON TELESCOPE , 2014, 1404.7095.

[14]  Harvard,et al.  Three-dimensional general relativistic radiation magnetohydrodynamical simulation of super-Eddington accretion, using a new code HARMRAD with M1 closure , 2013, 1312.6127.

[15]  A. Loeb,et al.  TESTING THE NO-HAIR THEOREM WITH EVENT HORIZON TELESCOPE OBSERVATIONS OF SAGITTARIUS A* , 2013, 1311.5564.

[16]  H. Falcke,et al.  Toward the event horizon—the supermassive black hole in the Galactic Center , 2013, 1311.1841.

[17]  Adam Deller,et al.  THE ANGULAR BROADENING OF THE GALACTIC CENTER PULSAR SGR J1745-29: A NEW CONSTRAINT ON THE SCATTERING MEDIUM , 2013, 1309.4672.

[18]  J. Dexter,et al.  Tilted black hole accretion disc models of Sagittarius A*: time-variable millimetre to near-infrared emission , 2012, 1204.4454.

[19]  B. Nikolic,et al.  Atmospheric phase correction for ALMA with 183 GHz water vapour radiometers , 2011, 2011 XXXth URSI General Assembly and Scientific Symposium.

[20]  Oleg M. Smirnov,et al.  Revisiting the radio interferometer measurement equation. II. Calibration and direction-dependent effects , 2011, 1101.1765.

[21]  O. Smirnov Revisiting the radio interferometer measurement equation. I. A full-sky Jones formalism , 2011, 1101.1764.

[22]  Oleg M. Smirnov,et al.  Revisiting the radio interferometer measurement equation. III. Addressing direction-dependent effects in 21 cm WSRT observations of 3C 147 , 2011, 1101.1768.

[23]  M. Wright,et al.  1.3 mm WAVELENGTH VLBI OF SAGITTARIUS A*: DETECTION OF TIME-VARIABLE EMISSION ON EVENT HORIZON SCALES , 2010, 1011.2472.

[24]  O. Smirnov,et al.  The MeqTrees software system and its use for third-generation calibration of radio interferometers , 2010, 1101.1745.

[25]  Z. Etienne,et al.  Relativistic magnetohydrodynamics in dynamical spacetimes: A new adaptive mesh refinement implementation , 2010, 1007.2848.

[26]  J. Pardo,et al.  Atmospheric dispersion and the implications for phase calibration , 2009, 0912.2852.

[27]  U. I. Urbana-Champaign,et al.  Imaging an Event Horizon: submm-VLBI of a Super Massive Black Hole , 2009, 0906.3899.

[28]  A. Loeb,et al.  IMAGING THE BLACK HOLE SILHOUETTE OF M87: IMPLICATIONS FOR JET FORMATION AND BLACK HOLE SPIN , 2008, 0812.0366.

[29]  Canadian Institute for Theoretical Astrophysics,et al.  DETECTING FLARING STRUCTURES IN SAGITTARIUS A* WITH HIGH-FREQUENCY VLBI , 2008, 0809.3424.

[30]  Attila Popping,et al.  The standing wave phenomenon in radio telescopes - Frequency modulation of the WSRT primary beam , 2007, 0712.2303.

[31]  O. Zanotti,et al.  ECHO: a Eulerian conservative high-order scheme for general relativistic magnetohydrodynamics and magnetodynamics , 2007, 0704.3206.

[32]  H. Falcke,et al.  The Intrinsic Size of Sagittarius A* from 0.35 to 6 cm , 2006, astro-ph/0608004.

[33]  Paul T. P. Ho,et al.  A size of ∼1 au for the radio source Sgr A* at the centre of the Milky Way , 2005, Nature.

[34]  H. Falcke,et al.  Detection of the Intrinsic Size of Sagittarius A* Through Closure Amplitude Imaging , 2004, Science.

[35]  Eugene Serabyn,et al.  Atmospheric transmission at microwaves (ATM): an improved model for millimeter/submillimeter applications , 2001 .

[36]  M. Wright,et al.  Structure of Sagittarius A* at 86 GHz using VLBI Closure Quantities , 2001, astro-ph/0102232.

[37]  C. Carilli,et al.  Tropospheric phase calibration in millimeter interferometry , 1999, astro-ph/9904248.

[38]  E. Weisstein,et al.  Submillimeter fourier-transform spectrometer measurements of atmospheric opacity above mauna kea. , 1998, Applied optics.

[39]  H. Falcke,et al.  The Simultaneous Spectrum of Sagittarius A* from 20 Centimeters to 1 Millimeter and the Nature of the Millimeter Excess , 1998, astro-ph/9801085.

[40]  J. Carlstrom,et al.  High-Frequency Measurements of the Spectrum of Sagittarius A* , 1997 .

[41]  O. Lay The temporal power spectrum of atmospheric fluctuations due to water vapor , 1997 .

[42]  R. Sault,et al.  Understanding radio polarimetry. I. Mathematical foundations , 1996 .

[43]  John W. Armstrong,et al.  Electron Density Power Spectrum in the Local Interstellar Medium , 1995 .

[44]  Alan E. E. Rogers,et al.  Fringe Detection Methods for Very Long Baseline Arrays , 1995 .

[45]  Ramesh Narayan,et al.  The physics of pulsar scintillation , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[46]  R. Lane,et al.  Simulation of a Kolmogorov phase screen , 1992 .

[47]  R. Narayan,et al.  The shape of a scatter-broadened image. II: Interferometric visibilities , 1989 .

[48]  R. Narayan,et al.  The shape of a scatter-broadened image – I. Numerical simulations and physical principles , 1989 .

[49]  Robert N. Treuhaft,et al.  The effect of the dynamic wet troposphere on radio interferometric measurements , 1987 .

[50]  C. Coulman,et al.  FUNDAMENTAL AND APPLIED ASPECTS OF ASTRONOMICAL "SEEING" , 1985 .

[51]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .