A Predictive Analytics Tool to Provide Visibility Into Completion of Work Orders in Supply Chain Systems

[1]  A. Gunasekaran,et al.  A framework for supply chain performance measurement , 2004 .

[2]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[3]  Nicolai Meinshausen,et al.  Quantile Regression Forests , 2006, J. Mach. Learn. Res..

[4]  Luca Calderoni,et al.  Indoor localization in a hospital environment using Random Forest classifiers , 2015, Expert Syst. Appl..

[5]  Farhad Ameri,et al.  A Framework Based on K-Means Clustering and Topic Modeling for Analyzing Unstructured Manufacturing Capability Data , 2020, J. Comput. Inf. Sci. Eng..

[6]  A. Gunasekaran,et al.  Supply chain collaboration: Impact of success in long-term partnerships , 2014 .

[7]  Salvatore Gerbino,et al.  On the usability assessment of the graphical user interface related to a digital pattern software tool , 2017 .

[8]  Dan Yang,et al.  A Hybrid Statistical Method for Accurate Prediction of Supplier Delivery Times of Aircraft Engine Parts , 2015 .

[9]  Kimberly D. Pendell,et al.  Usability Study of a Library's Mobile Website: An Example from Portland State University , 2012 .

[10]  Pin T. Ng,et al.  Quantile smoothing splines , 1994 .

[11]  Changjun Jiang,et al.  Random forest for credit card fraud detection , 2018, 2018 IEEE 15th International Conference on Networking, Sensing and Control (ICNSC).

[12]  Hadley Wickham,et al.  Reshaping Data with the reshape Package , 2007 .

[13]  Ignacio E. Grossmann,et al.  A model predictive control strategy for supply chain optimization , 2003, Comput. Chem. Eng..

[14]  Jinxing Xie,et al.  Production, Manufacturing and Logistics The impact of forecasting model selection on the value of information sharing in a supply chain , 2002 .

[15]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[16]  Shahab Sokhansanj,et al.  A quantile-based scenario analysis approach to biomass supply chain optimization under uncertainty , 2017, Comput. Chem. Eng..

[17]  Jj Allaire,et al.  Web Application Framework for R , 2016 .

[18]  James R. Lewis,et al.  IBM computer usability satisfaction questionnaires: Psychometric evaluation and instructions for use , 1995, Int. J. Hum. Comput. Interact..

[19]  Jakob Nielsen,et al.  Usability engineering , 1997, The Computer Science and Engineering Handbook.

[20]  Farhad Ameri,et al.  Thesaurus-Guided Text Analytics Technique for Capability-Based Classification of Manufacturing Suppliers , 2018, J. Comput. Inf. Sci. Eng..

[21]  Sung H. Han,et al.  Designing a human–computer interface for a process control room: A case study of a steel manufacturing company , 2007 .

[22]  Mitchell M. Tseng,et al.  Design Considerations for Building Distributed Supply Chain Management Systems Based on Cloud Computing , 2015 .

[23]  Xiande Zhao,et al.  Improving the supply chain performance: Use of forecasting models versus early order commitments , 2001 .

[24]  Marcie Dishman Technology Review: Website Usability Testing Software-Improving User Experience and Satisfaction with Community College Websites. , 2015 .

[25]  Rustam M. Vahidov,et al.  Application of machine learning techniques for supply chain demand forecasting , 2008, Eur. J. Oper. Res..

[26]  M. Cao,et al.  Supply chain collaboration: Impact on collaborative advantage and firm performance , 2011 .

[27]  Debasish Dutta,et al.  A Matchmaking Methodology for Supply Chain Deployment in Distributed Manufacturing Environments , 2008, J. Comput. Inf. Sci. Eng..

[28]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .

[29]  Jeffrey Rubin,et al.  Handbook of Usability Testing: How to Plan, Design, and Conduct Effective Tests , 1994 .

[30]  Luca Zanni,et al.  Digital Manufacturing and Virtual Reality for Tractors' Human-Centred Design , 2018 .

[31]  Frank Y. Chen,et al.  Quantifying the Bullwhip Effect in a Simple Supply Chain: The Impact of Forecasting, Lead Times, and Information.: The Impact of Forecasting, Lead Times, and Information. , 2000 .

[32]  R. Koenker,et al.  The Gaussian hare and the Laplacian tortoise: computability of squared-error versus absolute-error estimators , 1997 .

[33]  Stanislav KolenikovGustavo Angeles The Use of Discrete Data in PCA: Theory, Simulations, and Applications to Socioeconomic Indices , 2004 .

[34]  Richard Weber,et al.  Improved supply chain management based on hybrid demand forecasts , 2007, Appl. Soft Comput..

[35]  Inderjit S. Dhillon,et al.  Generalized Nonnegative Matrix Approximations with Bregman Divergences , 2005, NIPS.

[36]  N. L. Johnson,et al.  Breakthroughs in Statistics , 1992 .

[37]  Farhad Ameri,et al.  A Text Mining Technique for Manufacturing Supplier Classification , 2015 .

[38]  Morteza Shafiee,et al.  Supply Chain Performance Evaluation With Rough Two-Stage Data Envelopment Analysis Model: Noncooperative Stackelberg Game Approach , 2017, J. Comput. Inf. Sci. Eng..

[39]  H. Kaiser The varimax criterion for analytic rotation in factor analysis , 1958 .

[40]  Janis Grabis,et al.  Application of multi-steps forecasting for restraining the bullwhip effect and improving inventory performance under autoregressive demand , 2005, Eur. J. Oper. Res..

[41]  Mikihisa Nakano Collaborative forecasting and planning in supply chains , 2009 .

[42]  Stephen Portnoy,et al.  Bivariate quantile smoothing splines , 1998 .